200632 - EPI - Epidemiology

Coordinating unit: 200 - FME - School of Mathematics and Statistics

Teaching unit: 715 - EIO - Department of Statistics and Operations Research

Academic year: 2017

Degree: MASTER'S DEGREE IN STATISTICS AND OPERATIONS RESEARCH (Syllabus 2013). (Teaching unit Optional)

ECTS credits: 5
Teaching languages: Spanish

Teaching staff

Coordinator: KLAUS GERHARD LANDOHR

Others: Segon quadrimestre: KLAUS GERHARD LANDOHR - A

Opening hours

Timetable: At agreed times.

Prior skills

The student has to be familiar with the concepts of statistical inference: the likelihood function, maximum likelihood estimation, hypothesis testing, and linear regression models. In particular, the student should be familiar with the contents of the first three chapters of the book "Principles of Statistical Inference" Cox (Cambridge University Press, 2006).

Requirements

Knowledge of the software package R.

Degree competences to which the subject contributes

Specific:

3. CE-1. Ability to design and manage the collection of information and coding, handling, storing and processing it.

4. CE-2. Ability to master the proper terminology in a field that is necessary to apply statistical or operations research models and methods to solve real problems.

6. CE-5. Ability to formulate and solve real problems of decision-making in different application areas being able to choose the statistical method and the optimization algorithm more suitable in every occasion.

Translate to English

7. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem.

5. CE-3. Ability to formulate, analyze and validate models applicable to practical problems. Ability to select the method and / or statistical or operations research technique more appropriate to apply this model to the situation or problem.

8. CE-7. Ability to understand statistical and operations research papers of an advanced level. Know the research procedures for both the production of new knowledge and its transmission.

9. CE-8. Ability to discuss the validity, scope and relevance of these solutions and be able to present and defend their conclusions.

Transversal:

2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are
The course aims to enable the student to design and analyze epidemiological studies. This includes, that s/he should be able to propose the adequate designs and analyses for an epidemiological study in such a way that these can be understood easily by other investigators.

In particular, after the completion of the course, the student should have acquired a profound knowledge on the following topics and should be able to apply the corresponding methods to real data:

1. Design of epidemiological studies: cohort studies, case-control studies, and population based studies.
2. Epidemiological measures of disease frequency, mortality, and exposure-disease association.
3. Sources of bias in epidemiological studies: information, selection, and confounding bias.
5. Logistic, logbinomial and Poisson regression.

Specifically, the student should be able:

- To propose designs and analysis for epidemiological studies that provide the best information possible and that can be assimilated easily by the researchers that will have to interpret them.
- To judge the advantages and disadvantages of different types of epidemiological studies.
- To estimate and interpret measures of the disease frequency, mortality, and exposure-disease association.
- To know different sources of bias in epidemiological studies and possible measures to avoid the bias.
- To fit logistic, logbinomial and Poisson regression models to real data and interpret the results.

Learning objectives of the subject

The course aims to enable the student to design and analyze epidemiological studies. This includes, that s/he should be able to propose the adequate designs and analyses for an epidemiological study in such a way that these can be understood easily by other investigators.

In particular, after the completion of the course, the student should have acquired a profound knowledge on the following topics and should be able to apply the corresponding methods to real data:

1. Design of epidemiological studies: cohort studies, case-control studies, and population based studies.
2. Epidemiological measures of disease frequency, mortality, and exposure-disease association.
3. Sources of bias in epidemiological studies: information, selection, and confounding bias.
5. Logistic, logbinomial and Poisson regression.

Specifically, the student should be able:

- To propose designs and analysis for epidemiological studies that provide the best information possible and that can be assimilated easily by the researchers that will have to interpret them.
- To judge the advantages and disadvantages of different types of epidemiological studies.
- To estimate and interpret measures of the disease frequency, mortality, and exposure-disease association.
- To know different sources of bias in epidemiological studies and possible measures to avoid the bias.
- To fit logistic, logbinomial and Poisson regression models to real data and interpret the results.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
<td>12.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
200632 - EPI - Epidemiology

Content

<table>
<thead>
<tr>
<th>Introduction to epidemiology</th>
<th>Learning time: 3h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>a) Epidemiological studies vs. clinical trials.</td>
<td></td>
</tr>
<tr>
<td>b) Design of epidemiological studies: cohort studies, case-control studies, and population-based studies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epidemiological measures: concepts and estimation</th>
<th>Learning time: 13h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 10h 30m</td>
</tr>
<tr>
<td>a) Measures of disease frequency: prevalence, cumulative incidence, and incidence rate.</td>
<td></td>
</tr>
<tr>
<td>b) Mortality rates and their comparison: direct and indirect standardization, the comparative mortality figure, and the standardized mortality ratio.</td>
<td></td>
</tr>
<tr>
<td>c) Measures of exposition-disease association: relative risk, risk difference, odds ratio difference, and attributable risk.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aspects of epidemiological studies</th>
<th>Learning time: 13h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 10h 30m</td>
</tr>
<tr>
<td>a) Causal inference in epidemiological studies.</td>
<td></td>
</tr>
<tr>
<td>b) Study of the cause-effect relation. Common causes and effects.</td>
<td></td>
</tr>
<tr>
<td>c) Sources of bias in epidemiological studies: information bias, selection bias, and confounding.</td>
<td></td>
</tr>
<tr>
<td>d) Strategies for error control and variance minimization: stratification and matching.</td>
<td></td>
</tr>
</tbody>
</table>
200632 - EPI - Epidemiology

Analysis of epidemiological studies

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Contingency tables: estimation of the relative risk and the odds ratio in cohort studies, case-control studies, and population based studies.</td>
<td>Theory classes: 10h 30m</td>
</tr>
<tr>
<td>b) The Mantel-Haenszel estimator in presence of confounding.</td>
<td>Laboratory classes: 4h 30m</td>
</tr>
<tr>
<td>c) Analysis of matched data in case-control studies.</td>
<td></td>
</tr>
<tr>
<td>e) Logbionomial regression: model expression, parameter estimation, and model interpretation.</td>
<td></td>
</tr>
<tr>
<td>f) Poisson regression: model expression, parameter estimation, and model interpretation.</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

Assessment is based on the following:

a) Final exam (50%)
b) Problem sheets (30%)
c) Summary, interpretation, and presentation of a scientific paper on epidemiological topics (20%).

Bibliography

Basic:

Complementary: