200634 - MDX - Discrete Network Models

Coordinating unit: 200 - FME - School of Mathematics and Statistics
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2017
Degree: MASTER'S DEGREE IN STATISTICS AND OPERATIONS RESEARCH (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: Spanish

Teaching staff

Coordinator: ELENA FERNÁNDEZ AREIZAGA
Others: Segon quadrimestre:
ELENA FERNÁNDEZ AREIZAGA - A
JESSICA RODRÍGUEZ PEREIRA - A

Opening hours

Timetable: By appointment.

Prior skills

The course does not follow a traditional text, since, to a large extent, it is based on proposals of problems made by the students themselves. The type of models that are studied can be found in:

Requirements

It is highly recommended to have followed the course Integer and Combinatorial Optimization, of which the current course is the best complement.

Basic knowledge on modeling techniques in Operations Research and Integer Programming is required.
Basic knowledge on some programming language is required.

Degree competences to which the subject contributes

Specific:
7. CE-2. Ability to master the proper terminology in a field that is necessary to apply statistical or operations research models and methods to solve real problems.
8. CE-3. Ability to formulate, analyze and validate models applicable to practical problems. Ability to select the method and / or statistical or operations research technique more appropriate to apply this model to the situation or problem.
9. CE-5. Ability to formulate and solve real problems of decision-making in different application areas being able to choose the statistical method and the optimization algorithm more suitable in every occasion.
Translate to English
10. CE-6. Ability to use appropriate software to perform the necessary calculations in solving a problem.
This course studies discrete models stated as network design problems. The main objective are the potential applications of these models, including logistics and telecommunications among others. The course is offered as a specialization in the field of Operations Research. In particular, it is considered as a highly suitable complement of the course Integer and Combinatorial Optimization oriented to theoretical aspects and solution techniques, whereas the focus on the current course are models and their applications, as well as practical implementation aspects.

The main objective of this course is, therefore, to highlight the versatility of discrete network models and to introduce the
student to the main models their applications and possible algorithmic alternatives.
A more specific objective of this course is to know alternative formulation possibilities for these problems in terms of the
criteria and the characteristics to be considered in each case, and to be able to assess the corresponding advantages and
downsides.

From the perspective of discrete optimization, the objective of this course is to know the alternative algorithmic
approaches, to assess their associated technical difficulties and to be able of using available software to implement a
solution method appropriate in each case.

<p>	Study load	
Total learning time: 125h	Hours large group:	30h
	Hours medium group:	0h
	Hours small group:	15h
	Guided activities:	0h
	Self study:	80h
<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to discrete network models and their applications.</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Description:</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Presentation of the main families of discrete models in networks and their applications.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts in discrete network models.</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Description:</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Connectivity: paths and trees. Bi-connected structures. Steiner trees.</td>
<td>Self study : 4h</td>
</tr>
<tr>
<td>Robustness: alternative criteria for reliability in networks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of demand in network optimization.</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Description:</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Single commodity vs multiple commodities.</td>
<td>Self study : 4h</td>
</tr>
<tr>
<td>Demand among users vs demand user/server.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling alternatives for discrete network models.</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Description:</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Compact vs extended formulations.</td>
<td>Self study : 4h</td>
</tr>
<tr>
<td>Models with two, three and four index variables.</td>
<td></td>
</tr>
<tr>
<td>Reinforcement of formulations: valid inequalities.</td>
<td></td>
</tr>
</tbody>
</table>
Applications of discrete network models.

Description:
Telecommunications: network design problems.
Location: Network location. Hub location problems.

Learning time: 12h
- Theory classes: 5h
- Laboratory classes: 3h
- Self study: 4h

Solution methods.

Description:
Heuristic methods.
Decomposition methods (lagrangean relaxation, column generation, etc)
Branch-and-cut-methods: separation of valid inequalities.

Learning time: 12h
- Theory classes: 5h
- Laboratory classes: 3h
- Self study: 4h

Development of the practical assignment

Description:
Development of the practical assignment: Problem proposal; presentation in class of the selected problem, its potential applications and modeling alternatives de modelización. Presentación en clase de metodo de solución elegido. Implementación del modelo y método de solución propuestos. Realización de experiencia computacional y análisis de resultados. Elaboración y entrega en plazo indicado de informe detallado en el que se detallen todos los apartados anteriores.

Learning time: 60h
- Self study: 60h
200634 - MDX - Discrete Network Models

Qualification system

1. (40%) Individual project by each student. For each student the project will focus on his intensification problem. The project will consist of: (i) Study of modeling alternatives for the problem addressed and justified proposal of a specific model; (ii) design and implementation of a solution algorithm for the problem; (iii) presentation and analysis of obtained results.

2. (25%) Presentation and discussion in class of the problem proposed by the student. Presentation and discussion of the model addressed and its modeling and solution alternatives. Presentation of the computational experiments carried out and of the obtained results.

3. (25%) Active participation in class: Presentation of the issued exercises. Participation in the discussion of the projects and exercises presented by the other students, …

4. (10%) Fulfillment of 3-4 exercises throughout the course. The exercises will be briefly discussed in class but they should be done autonomously as a personal assignment outside the class. A due date for delivering each of them will be set.

Bibliography

Basic:

Complementary:

Others resources:

Computer material

CPLEX

Software for modeling and solving linear-integer programming models