205110 - Game Theory

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2017
Degree: MASTER’S DEGREE IN TECHNOLOGY AND ENGINEERING MANAGEMENT (Syllabus 2016). (Teaching unit Optional)
ECTS credits: 7,5
Teaching languages: English

Teaching staff
Coordinator: Francesc Carreras Escobar

Degree competences to which the subject contributes

Specific:
CE03-MEM. The ability to optimise problems and systems using mathematical models and make decisions in conditions of uncertainty.
CE04-MEM. The ability to apply theoretical and fundamental principles of technology and engineering business management in conditions of uncertainty.
CE06-MEM. The ability to optimally assign physical and financial resources in process and project management in technological settings.
CE08-MEM. The ability to evaluate the results of process and project development in technological settings subject to levels of process uncertainty.
CE10-MEM. The ability to develop and defend a comprehensive technology and engineering business management project.

Transversal:
CT1a. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit.
CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Teaching methodology

Lecture: Lecturers present concepts, results and techniques, with the active participation of students.
Problem Based Learning: Lecturers and students solve exercises and standard problems through specific techniques related to the theoretical contents and principles of the course.
Project Based Learning: Students solve complex problems through specific techniques related to the theoretical contents and principles of the course.
Self-study: Students diagnose their learning needs, in collaboration with the lecturers, and plan their own learning process.

Learning objectives of the subject
205110 - Game Theory

The course introduces the aim and methodology of Game Theory, a branch of Operations Research devoted to the analysis of conflicts of interest. The convenience of applying game theory to solve decision-making problems in engineering management is illustrated by means of a variety of examples of this and other fields of knowledge.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group: 30h 16.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 30h 16.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 127h 30m 68.00%</td>
</tr>
</tbody>
</table>

Content

Module 1: Noncooperative Games and Strategies

Learning time: 97h 30m

- Theory classes: 15h
- Practical classes: 15h
- Self study: 67h 30m

Description:

Related activities:

- Distance and in-class activities
- Group project (First part)
- Final exam

Module 2: Cooperative Games and Sharing Rules

Learning time: 90h

- Theory classes: 15h
- Practical classes: 15h
- Self study: 60h

Description:

Related activities:

- Distance and in-class activities
- Group project (Option 2)
- Final exam
205110 - Game Theory

Qualification system

The final grade depends on the following three elements:

* 30%, Distance and in-class activities
* 40%, Group project (report and dissertation)
* 30%, Final exam

Bibliography