

Course guide 205203 - IR - Introduction to Rockets

Last modified: 31/07/2025

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering

Teaching unit: 748 - FIS - Department of Physics.

Degree: BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).

BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Optional subject). BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2025 ECTS Credits: 3.0 Languages: English

LECTURER

Coordinating lecturer: Manel Soria

Arnau Miró

Others:

TEACHING METHODOLOGY

The course will be developed through theoretical lectures, hands-on sessions with simulation software (ready available and to be developed by the students) and laboratory sessions, where the students will develop their own instrumentation to test small scale rockets and rocket engines.

LEARNING OBJECTIVES OF THE SUBJECT

Be familiar with rockets and their historic importance.

Know and understand the basic rocket components.

Understand the fundamentals of rocket propulsion and the different engine types.

Understand the thermodynamics of rocket engines.

Understand how rocket trajectories can be simulated.

Be familiar with rocket test bench instrumentation.

STUDY LOAD

Туре	Hours	Percentage
Hours large group	30,0	40.00
Self study	45,0	60.00

Total learning time: 75 h

Date: 16/10/2025 **Page:** 1 / 2

CONTENTS

Module 1: Fundamentals of rockets

Description:

- * History
- * Main rocket components components
- * Multiple stage rockets
- * Case study: SpaceX
- * Thermodynamics of rocket engines

Full-or-part-time: 25h Theory classes: 10h Self study: 15h

Module 2: Rocket trajectories

Description:

- * Study of basic rocket launch maneouvers with Kerbal Space simulator.
- * Two-dimensional model of rocket launch.

Full-or-part-time: 25h Theory classes: 10h Self study: 15h

Module 3: Experimental testing of rockets and rocket engines.

Description:

- * Test bench and rocket instrumentation: load cells, data loggers, GPS, IMU
- * Rocket telemetry systems
- * Hands on session: test of a rocket engine
- st Hands on sesssion: launch and recovery of a rocket with data loggers and/or telemetry sytems

Full-or-part-time: 25h Theory classes: 10h Self study: 15h

GRADING SYSTEM

Class participation and class exercices: 30%

Assignment: 30% Project: 40%

Students with a grade below 5.0 in the project, or the assignments, or the classroom participation, will be able to take an additional written exam covering all the subject, that will take place the date fixed in the calendar of final exams. The grade obtained in this test will range between 0 and 10, and will replace that of the part or parts below 5.0 only in case it is higher, up to a maximum of 5.0 points

Date: 16/10/2025 **Page:** 2 / 2