Degree competences to which the subject contributes

Specific:
1. Understanding and mastery of basic concepts about the general laws of mechanics, thermodynamics and electromagnetism fields and waves and their application to solving problems in engineering.

Teaching methodology

The directed learning consists of several processes. At first, it is necessary to consider the theory classes which develop in a big group. The teaching staffs introduce, in a brief way, general objectives of the chapter. Later, it is attempted to involve students with exercises for their active participation. The material of this part is in ATENEA: objectives, concepts, examples, evaluated programmed activities and bibliography. In second place, resolution of exercises, which develop in medium groups, are carried out. People work in reduced groups doing problems and exercises related with the objectives of the subject. This is an opportunity to develop transversal competences of work in team and to introduce, for the first time, concepts of cooperative learning. In last place, laboratory practices allow to develop basic concepts of methodology, objectives, experimental material, results and conclusions. Also it is a way to know the scientific method for the resolution of technological challenges. These practices are made in groups small, teams of two persons. Students have to prepare some part of work out of the laboratory classroom. This work could be individual or in group. Finally, it is necessary to stand out a time dedicated to autonomous learning dedicated to recommended readings and exercises proposed.

Learning objectives of the subject

If the Physics I course provides an understanding and domain of basic principles of Physics in its Mechanics aspect, the Physics II course will extend this domain to Oscillations, Waves and Thermodynamics.

On overcoming the subject, students will have acquired:
Understanding and mastery of kinematics and dynamics of the oscillations of particles as well as of solids.
Understanding and mastery of wave phenomena.
Understanding and mastery of the concepts of Temperature and Heat, and their applications in Thermodynamics.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>32h</th>
<th>21.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>14h</td>
<td>9.33%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>14h</td>
<td>9.33%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

1. Oscillations

Learning time: 44h
Theory classes: 10h
Practical classes: 4h
Laboratory classes: 4h
Self study: 26h

Description:
Simple harmonic motion (SHM). Examples.
Damped oscillations.
Forced oscillations.
Superposition of SHMs.

Related activities:
(ENG) 1, 2, 3, 4, 6, 7, 8

2. Waves

Learning time: 71h
Theory classes: 14h
Practical classes: 7h
Laboratory classes: 6h
Self study: 44h

Description:
General introduction to wave motion.
Physical description of some waves.
Wave propagation.
Superposition of waves.
Acústica.

Related activities:
(ENG) 1, 2, 3, 4, 5, 6, 7, 8

3. Thermodynamics

Learning time: 35h
Theory classes: 8h
Practical classes: 3h
Laboratory classes: 4h
Self study: 20h

Description:
Temperature.
Heat and changes of phase (or state).
First law of Thermodynamics.
Second law of Thermodynamics.

Related activities:
(ENG) 1, 2, 3, 5, 6, 7, 8
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Theory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVITY 1: THEORY SESSIONS</td>
<td>78h</td>
<td>28h</td>
<td>50h</td>
</tr>
<tr>
<td>ACTIVITY 2: PRACTICAL SESSIONS</td>
<td>37h</td>
<td>23h</td>
<td>14h</td>
</tr>
<tr>
<td>ACTIVITY 3: LABORATORY</td>
<td>26h</td>
<td>12h</td>
<td>14h</td>
</tr>
<tr>
<td>ACTIVITY 4: FIRST EVALUATION TEST</td>
<td>2h</td>
<td>2h</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY 5: SECOND EVALUATION TEST</td>
<td>2h</td>
<td>2h</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY 6: LABORATORY EVALUATION TEST</td>
<td>2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY 7: ATENEA EVALUATION TEST</td>
<td>3h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY 8: DELIVERING WORKS</td>
<td>8h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 78h

Self Study: 37h

Practical Classes: 26h

Laboratory Classes: 26h

Theory Classes: 2h

Self Study: 8h
Qualification system

The final grade is the weighted sum of the various grades.

- If the final exam has chosen the modality of the Second Partial (explained in Activity 5):
 \[\text{Final Grade} = 0.32 \times \text{N1A} + 0.43 \times \text{N2A} + 0.15 \times \text{NL} + 0.10 \times \text{NAC} \]

- If the final exam has chosen the modality of the Global Exam (explained in Activity 5):
 - If the Global Examination grade, NEG, is greater than the grade of the First Partial, N1A:
 \[\text{Final Grade} = 0.32 \times \text{NEG} + 0.43 \times \text{NEG} + 0.15 \times \text{NL} + 0.10 \times \text{NAC} \]
 - If the Global Examination grade, NEG, is smaller than the grade of the First Partial, N1A:
 \[\text{Final Grade} = 0.32 \times \text{N1A} + 0.43 \times \text{NEG} + 0.15 \times \text{NL} + 0.10 \times \text{NAC} \]

N1A: First Partial score (activity 4)
N2A: Second Partial score (activity 5);
NEG: Global Exam grade (activity 5);
NL: grade of the laboratory (activity 6);
NAC: continuous evaluation grade (activity 7);

Regulations for carrying out activities

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink
- Apunts de l'assignatura a Atenea
 http://atenea.upc.edu/moodle

Controls i notes en Aransa
 http://aransa.upc.es

Física con ordenador (Ángel Franco García)
 http://www.ehu.es