220023 - Electronic Circuits

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6

Teaching staff
Coordinator: David González Diez,
Others: Antonio Miguel López Martínez
Suñe Socias, Victor Manuel
Juan Antonio Gallardo

Opening hours
Timetable: By previous appointment on demand

Degree competences to which the subject contributes

Specific:
1. GrETA/GrEVA - An adequate understanding of the following, as applied to engineering: fundamental elements of the various types of aircraft; functional elements of air navigation systems and related electrical and electronic installations; the basics of the design and construction of airports and their various elements

Teaching methodology

The teaching methodology combines three activities:
· Theoretical lessons
· Laboratory practices
· Development of a project.

Learning objectives of the subject

Introduce the basic electronic components, and lay down the fundamentals of analog and digital systems. This knowledge is necessary in order to face the study of sensors and communication equipment of the airplane in posterior subjects.
220023 - Electronic Circuits

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 46h</th>
<th>30.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 14h</td>
<td>9.33%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

| MODULE 1: Basic electronic devices | Learning time: 17h
Theory classes: 6h
Laboratory classes: 1h
Self study: 10h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
</tbody>
</table>

| MODULE 2: Operational amplifier: linear and non-linear applications. | Learning time: 27h
Theory classes: 10h
Practical classes: 2h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
</tbody>
</table>

| MODULE 3: Digital electronic | Learning time: 28h
Theory classes: 10h
Laboratory classes: 3h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
</tbody>
</table>
MODULE 4: Introduction to microprocessor

Learning time: 46h
- Theory classes: 12h
- Laboratory classes: 4h
- Self study: 30h

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
</tbody>
</table>

MODULE 5: Power electronic

Learning time: 32h
- Theory classes: 8h
- Laboratory classes: 4h
- Self study: 20h

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
</tr>
<tr>
<td>Specific objectives:</td>
</tr>
</tbody>
</table>
Planning of activities

| ACTIVITY 1: THEORY AND PROBLEMS | Hours: 52h
Theory classes: 42h
Self study: 10h |
| ACTIVITY 2: LABORATORY | Hours: 16h
Laboratory classes: 6h
Self study: 10h |
| ACTIVITY 3: MIDTERM EXAM | Hours: 22h
Theory classes: 2h
Self study: 20h |
| ACTIVITY 4: PROJECT | Hours: 33h
Laboratory classes: 8h
Self study: 25h |
| ACTIVITY 5: FINAL EXAM | Hours: 27h
Theory classes: 2h
Self study: 25h |

Description:

Support materials:

Descriptions of the assignments due and their relation to the assessment:

Specific objectives:

Qualification system

Laboratory practices: 15%
First exam: 35%
Second exam: 30%
Proposed project: 20%

In order to recover an unsatisfactory mark of the first exam, the following procedure will be used. There will be a voluntary exam of 2 points that will be scheduled with the final exam. The mark obtained in this exam will be added to that obtained in the first exam. This additional exam is open to all students in the subject. The highest mark of the subject is 10.
Bibliography

Basic:

Complementary:

