220034 - Hydraulic Systems

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 729 - MF - Department of Fluid Mechanics
Academic year: 2017
Degree: BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 4,5 Teaching languages: Catalan

Teaching staff

Coordinator: Salvador de las Heras
Others: Hipòlit Moreno - Francisco Arias

Requirements

It is considered essential to have passed the subject of Fluid Mechanics.

Degree competences to which the subject contributes

Specific:
2. GRÉVA - An adequate understanding of the following, as applied to engineering: aircraft systems and automatic flight control systems in aerospace vehicles.

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology

- Lecture presenting the contents.
- Practical work.
- Independent work and study exercises.
- Preparation and assessable activities in groups.

Learning objectives of the subject

After completing the course, students must have achieved Level 3 (application) with general learning objectives:

Technology in the field of specialty
- Understand the scientific foundations
- Know how to use the technology and the necessary engineering professional performance
- Analyze specific situations, define problems, make decisions and implement plans of action in the search for solutions.
- Apply knowledge to real situations, managing resources appropriately.
- Interpret studies, reports, and analyze data numerically.
- Select and manage the information sources.
- Use existing tools as support.
- Working in a multidisciplinary team.
- Evaluate the integral, personal motivation, mobility.
communication
· Understand and speak with the proper terminology.
· Discuss and argue on various forums.

Technology transfer.
· Analyze and evaluate the environmental, social and ethical profession.
· Have a critical and innovative spirit.
· Retraining in new technological developments through continuous learning.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>31h</th>
<th>27.56%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 112h 30m</td>
<td>Hours small group:</td>
<td>14h</td>
<td>12.44%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>67h 30m</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

Module 1: INTRODUCTION TO THE HYDRAULIC SYSTEMS

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 18h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Energy transfer systems (STE)</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>2. STE by fluids (STEF)</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>3. Fluid (types, classification, properties, etc.)</td>
<td>Self study: 10h 30m</td>
</tr>
<tr>
<td>4. Pros and cons of the STEF</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:

- A - Autotests
- C1 - Controls
- E - Application Exercises
- EP1 - First exam

Module 2: COMPONENTS OF A STEF

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 40h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conceptual scheme of a STEF</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>2. Pumps</td>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>3. Actuators: rotary and linear motors motors (cylinders)</td>
<td>Self study: 24h</td>
</tr>
<tr>
<td>4. Control elements (valves)</td>
<td></td>
</tr>
<tr>
<td>5. Fluid conditioning elements</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:

- A - Autotests
- C1 - Controls
- E - Application Exercises
- EP1 - First exam
220034 - Hydraulic Systems

Module 4: SERVO HYDRAULIC VALVES AND DRIVE

<table>
<thead>
<tr>
<th>Learning time: 38h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Self study: 24h</td>
</tr>
</tbody>
</table>

Description:
- 4.1. Control Type
- 4.2. Servo and proportional valves
- 4.3. Servo valves / hydraulic cylinder
- 4.4. Applications (spoiler control, etc.)

Related activities:
- A - Autotests
- C2 - Controls
- E - Application Exercises
- EP2 - Second exam

Module 5: LANDING GEAR

<table>
<thead>
<tr>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 9h</td>
</tr>
</tbody>
</table>

Description:
- 5.1. Landing gears
- 5.2. Hydraulic / pneumatic systems
- 5.3. Design criteria

Related activities:
- A - Autotests
- C2 - Controls
- E - Application Exercises
- EP1 - First exam
- EP2 - Second exam
Planning of activities

<table>
<thead>
<tr>
<th>T - THEORY LESSONS</th>
<th>Hours: 44h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 25h</td>
</tr>
<tr>
<td></td>
<td>Self study: 19h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 1: A - AUTOTESTS</th>
<th>Hours: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 18h</td>
</tr>
</tbody>
</table>

Description:
Evaluable autotests of 60 minutes to make as individual self-learning.

Support materials:
Questionnaires in ATENEA

Descriptions of the assignments due and their relation to the assessment:
Activity assessable where the note is within 10% of the rating system of the subject.

Specific objectives:
Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual work and time management.

<table>
<thead>
<tr>
<th>ACTIVITY 2: C1 - CONTROL</th>
<th>Hours: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 3h</td>
</tr>
</tbody>
</table>

Description:
Controls multiple choice evaluable 45 minutes to hours of theory and / or Individual problems where in groups of 2 people.

Support materials:
Formula sheet done by the students themselves on one side of A4 paper.

Descriptions of the assignments due and their relation to the assessment:
Activity assessable where the note is within 10% of the rating system of the subject.

Specific objectives:
Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual or team work and time management. Upon completion of this activity, the student should be able to:
- Demonstrate the achievement of specific objectives related to the content of modules 1, 2 and 3

<table>
<thead>
<tr>
<th>ACTIVITY 3: C2 - CONTROL</th>
<th>Hours: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 3h</td>
</tr>
</tbody>
</table>

Description:
Controls multiple choice evaluable 45 minutes to hours of theory and / or Individual problems where in groups of 2 people.

Support materials:
Formula sheet done by the students themselves on one side of A4 paper.
Descriptions of the assignments due and their relation to the assessment:
Activity assessable where the note is within 10% of the rating system of the subject.

Specific objectives:
Acquiring the ability to know, understand and apply knowledge of the basic principles of the modules / topics, individual or team work and time management. Upon completion of this activity, the student should be able to:
- Demonstrate the achievement of specific objectives related to the content of modules 4 and 5

ACTIVITY 4: E - APPLICATION EXERCISES

Description:
Application exercises (example of application), summaries of reading articles, book chapters, book report, summary of attendance at seminars and / or conferences. proposed by the / the teacher / s.

Support materials:
Collection of problems of the subject hanging in ATHENA. It can also be considered supplemental material.

Descriptions of the assignments due and their relation to the assessment:
Activity deliverable. A portion of the generated application exercises and others will be self-assessors note no note value. The part with note shall be within 10% of the rating system of the subject.

Specific objectives:
Promote the implementation of the contents of the subject.

ACTIVITY 5: EP - FIRST EXAM

Description:
Exam to do individually.

Support materials:
Formula sheet used in controls.

Descriptions of the assignments due and their relation to the assessment:
The test is 30% of the final grade and will be the date, time and scheduled classroom. Deliver the final test time devoted to the activity.

Specific objectives:
Upon completion of this activity, the student should be able to:
- Demonstrate the achievement of specific objectives related to the content of modules 1, 2 and 4

EF - SECOND EXAM

Hours: 10h
Self study: 8h
Theory classes: 2h
Description:
Exam to do individually.

Support materials:
Formula sheet used in controls.

Descriptions of the assignments due and their relation to the assessment:
The test is 30% of the final grade and will be the date, time and scheduled classroom. Deliver the final test time devoted to the activity.

Specific objectives:
Upon completion of this activity, the student should be able to:
- Demonstrate the achievement of specific objectives related to the content of modules 1, 2, 3 and 4.

Qualification system
- 1st Evaluation: midterm exam, weight: 30% (with the possibility of recovery test midterm)
- 2nd Evaluation: final exam, weight: 30%
- Controls (Type test hours of class theory and / or problems): 20%
- Autotests (type self-test individual)): 10%
- Practical exercises (proposed real applications, reading articles, chapters reading books, attending seminars and / or conferences, etc.): 10%

Regulations for carrying out activities
Individual autotests as independent learning.
Controls are multiple choice and will individually or in pairs with an approximate duration of 45 minutes. A formula sheet can be handmade form by students.
The exams consist of two exercises lasting approximately two hours.
220034 - Hydraulic Systems

Bibliography

Basic:

Complementary:

Others resources: