230019 - DGD - Digital Design

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2017
Degree:
- BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff

Coordinator:
- Pons Nin, Joan
- Mateo Peña, Diego
Others:
- Altet, Josep
- Bardés, Daniel
- Bermejo, Sandra
- Calderer, Josep
- Chávez, Juan Antonio
- García, Pau
- Martin, Isidro
- Mateo, Diego
- Pons, Joan
- Puigdollers, Joaquim

Prior skills

- Basic analysis of electronic circuits.
- Basic knowledge of electronic devices and, in particular, the MOS transistor.

Requirements

- Electronics Fundamentals
- Linear Circuits

Degree competences to which the subject contributes

Generical:
12 CPE N2. They will be able to identify, formulate and solve engineering problems in the ICC field and will know how to develop a method for analysing and solving problems that is systematic, critical and creative.
230019 - DGD - Digital Design

Teaching methodology

Lectures and application classes
Laboratory classes
Group work (distance)
Individual work (distance)
Exercises
Short answer tests (Control)
Long answer tests (Final Exam)
Laboratory work

Learning objectives of the subject

The student must be able to analyze, design and experimentally verify combinational and sequential digital subsystems. This course introduces and uses the hardware description language VHDL. It also includes an introduction to CMOS logic circuits, an introduction and utilization of programmable logic devices and an introduction to complex digital systems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>39h</th>
<th>26.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>26h</td>
<td>17.33%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>85h</td>
<td>56.67%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1. Introduction to digital design</td>
<td>17h</td>
<td>The digital abstraction, systems and digital signals, behavior vs. structure, hierarchical design. Logic functions and Boolean algebra. Number systems and codes. Under the digital abstraction: power, delay, power consumption, logic levels and high impedance.</td>
</tr>
<tr>
<td>Module 2. Combinational design</td>
<td>30h</td>
<td>SdP and PdS canonic design. Simplification of logic functions. Combinational design based on logic gates and on standard combinational modules. Multiplexers, decoders, adders, comparators, etc.</td>
</tr>
<tr>
<td>Module 3. Combinational design with VHDL</td>
<td>24h</td>
<td>History and basic features of HDLs, methodologies and design tools. Basic elements: data types, objects, operators. Units Description: entities, architectures, packages and libraries. Concurrent assignments, conditional assignments and selections. Processes and sequential statements. Declaration and instantiation of components.</td>
</tr>
</tbody>
</table>
Module 5. CMOS digital circuits

Learning time: 22h
Theory classes: 10h
Laboratory classes: 0h
Self study: 12h

Description:
Types of digital ICs and logic families. MOS transistors. CMOS inverter and basic logic gates. CMOS features: circuit delays, spurious, static and dynamic power consumption. Programmable logic devices, logic cells, and types of synthesis. Memory structures.

Qualification system
Final grade based on the respective qualifications of the theory (60%) and the laboratory (40%) parts. The theory mark consists of 60% from the final theory exam and 40% from continuous assessment: exams, small works, delivery of problems or other activities done during the course. The laboratory mark is obtained from the laboratory work done during the course and from the final lab exam.

The re-evaluation of the course involves having to do the final exam again, which includes theory and laboratory parts. Grades earned replace the previous ones. Laboratory work and continuous assessment are not re-avaluable.

This course will assess the generic skill:
- Ability to identify, formulate and solve engineering problems (Intermediate Level)

Regulations for carrying out activities
During the exams it is not allowed to use wireless devices (mobile phones, laptops, tablets, etc.) nor programmable calculators. It is also necessary to provide some identification document (ID card, passport, etc.)

Bibliography

Basic:
Harris, S.L; Money, D. Digital design and computer architecture. Waltham, MA: Morgan Kaufmann, 2016. ISBN 9780128000564.

Others resources:
Computer material
 Quartus II Web edition