Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree:
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Optional)
- BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Optional)
- BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 2
Teaching languages: Catalan

Teaching staff
Coordinator: Josep Ramon Casas
Others: Josep Ramon Casas

Prior skills
Advanced programming skills in C/C++ (FO). Basics of Linux OS. Basic concepts of Image and Video Processing (IPSAV). We suggest taking the 5 days C++ course by P. Machanick, "C and C++ in Five Days", Univ. of Queensland, 2003

Requirements
- FUNDAMENTALS OF COMPUTERS - Prerequisite
- INTRODUCTION TO AUDIOVISUAL SIGNAL PROCESSING - Prerequisite

Degree competences to which the subject contributes

Generical:
10 ECI N3. They will have acquired knowledge related to experiments and laboratory instruments and will be competent in a laboratory environment in the ICC field. They will know how to use the instruments and tools of telecommunications and electronic engineering and how to interpret manuals and specifications. They will be able to evaluate the errors and limitations associated with simulation measures and results.
08 CRPE N3. ABILITY TO IDENTIFY, FORMULATE AND SOLVE ENGINEERING PROBLEMS Level 3. To identify and model complex systems. To identify methods and tools appropriate to pose the equations and descriptions associated with the models and to solve them. To carry out qualitative analysis and approaches. To determine the uncertainty of the results. To formulate hypotheses and experimental methods to validate them. To set up and manage undertakings. To identify major components and establish priorities. To develop critical thinking.
230306 - K3D - 3D with Kinect, Hands-On-Seminar

Teaching methodology

Project based learning. The professor explains the conceptual basis of point clouds and 3D sensors, and then proposes as final target for this seminar implementing a functional application working on the data of a real-time 3D sensor. The students progress towards the proposed objective in five lab sessions, first getting familiar with the programming environment (Eclipse IDE for C/C++ on linux, PCL library), working later with detection functionalities of the PCL for geometrical object analysis, then analyzing actual off-line data from the environment to end up with the proposed challenge of analysis and detection over online data from the 3D sensor.

Learning objectives of the subject

Recent advances in consumer depth cameras such as Microsoft Kinect (released October 2010), Asus Xtion, Structure or Carmine, have fostered growing interest thanks to the possibility of acquiring 3D data quickly, reliably and at low cost. Numerous applications have appeared in multiple industry sectors as in robotics, 3D reconstruction, object, body pose and gesture recognition, and even first applications in audiovisual production.

The target of this seminar is to quickly introduce the student in the concepts and basic techniques of 3D capture, analysis and representation using a commercial consumer depth camera. Practical sessions will include data acquisition from the sensor, and then analysis, manipulation, rendering and display with the tools available from Point Cloud Library (PCL).

Study load

<table>
<thead>
<tr>
<th>Total learning time: 50h</th>
<th>Hours small group: 20h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 30h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
230306 - K3D - 3D with Kinect, Hands-On-Seminar

Content

| Introduction to RGB+D video | Learning time: 9h
Practical classes: 9h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>1.1 Standards and Applications</td>
<td></td>
</tr>
<tr>
<td>1.2 3D scene representation: images, depth, 3D sensors and multiple cameras</td>
<td></td>
</tr>
<tr>
<td>1.3 From 2D to 3D: camera calibration, projection and reconstruction. Geometry of single views and multiple-views</td>
<td></td>
</tr>
</tbody>
</table>
| 3D sensors and range data | Learning time: 4h 30m
Practical classes: 4h 30m |
| **Description:** | |
| 2.1 Types of 3D sensors | |
| 2.2 Range capture and depth data features: calibration | |
| 2.3 Range data representation: point clouds and meshes | |
| 3D data analysis | Learning time: 4h 30m
Theory classes: 4h 30m |
| **Description:** | |
| 3.1 Filtering, registration, spurious removal | |
| 3.2 Estimation of simple geometric objects | |
| 3D reconstruction and scene creation | Learning time: 4h 30m
Theory classes: 4h 30m |
| **Description:** | |
| 4.1 Rendering and display | |
| 4.2 3D from motion | |
| 4.3 Point cloud scenes | |

Qualification system

The seminar will be assessed on the basis of a report presented by the student corresponding to the last lab session (application), together with a brief online questionnaire about course contents.
230306 - K3D - 3D with Kinect, Hands-On-Seminar

Bibliography

Basic:

Complementary:

Others resources:

Remote access to K3D virtual machine from the AV recording lab D5-S105

Computer material

Màquina virtual K3D (Grup GPI / departament TSC)

K3D virtual machine (GPI research group / TSC department)