230323 - IPER - Pigment Identification with Raman Spectroscopy

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree: BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Optional)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Optional)

ECTS credits: 2
Teaching languages: Spanish

Teaching staff
Coordinator: Sergio Ruiz Moreno
Others: Sergio Ruiz Moreno
Rosana Pérez
Mª José Soneira

Prior skills
First and second courses completed

Teaching methodology
Class room and laboratory

Learning objectives of the subject
Experimentation of the new optical communications technologies applied to the pigment analysis

Study load

<table>
<thead>
<tr>
<th>Total learning time: 50h</th>
<th>Hours large group: 12h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 8h</td>
<td>16.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 30h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Pigment identification with Raman spectroscopy: Application of the laser to the investigation and conservation of artworks</th>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Scientific methodologies in conservation, restoration, datation and catalogation of artworks</td>
<td></td>
</tr>
<tr>
<td>- Pulsed lasers (IR and UV) in the conservation of the cultural heritage (laser cleaning)</td>
<td></td>
</tr>
<tr>
<td>- CW laser and Raman spectroscopy: molecular information (the Raman effect)</td>
<td></td>
</tr>
<tr>
<td>- Modern systems of Raman spectroscopy with optical fiber: direct and non destructive identification of pigments</td>
<td></td>
</tr>
<tr>
<td>- Fundamental parameters in Raman analysis</td>
<td></td>
</tr>
<tr>
<td>- Noise and interferences in a Raman spectrum: SNR optimization</td>
<td></td>
</tr>
<tr>
<td>- Differentiation between natural and synthetic pigments</td>
<td></td>
</tr>
<tr>
<td>- Spectral identification in mixtures of pigments</td>
<td></td>
</tr>
<tr>
<td>- Experiences with the Cultural Heritage at the UPC</td>
<td></td>
</tr>
<tr>
<td>- Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

Description:

- Laboratory of Raman Spectroscopy

Qualification system

Experimental tasks and continuous evaluation

Bibliography