Degree competences to which the subject contributes

Specific:
CEE1. Ability to understand and apply the principles of operation of power electronic systems in regulation, undulation and amplification applications.
CEE24. Ability to identify and evaluate innovative ideas and products in the area of electronic technology.
CEE12. Ability to use semiconductor devices taking into account their physical characteristics and limitations.
CEE4. Ability to design continuous and discrete time controllers for power electronic systems.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.

Teaching methodology
Master class
Autonomous work
Problems based learning

Learning objectives of the subject
The course introduces the analysis and design techniques of power electronics circuits and their applications to the supply of electronic and electromechanical systems as well as in renewable energy systems.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 62h 30m</td>
<td>20h</td>
<td>42h 30m</td>
</tr>
<tr>
<td></td>
<td>32.00%</td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Power electronics: why and where?</th>
<th>Learning time: 4h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Objectives and application of power</td>
<td>Self study : 2h 30m</td>
</tr>
<tr>
<td>electronics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power processing circuits: objectives and circuit elements</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Objectives of a power processing system: efficiency and control</td>
<td>Self study : 8h</td>
</tr>
<tr>
<td>of power flow. Circuit elements, Electrical Interconnection</td>
<td></td>
</tr>
<tr>
<td>Rules. Type of power conversion: DC-DC, DC-AC, AC-DC. Basic</td>
<td></td>
</tr>
<tr>
<td>electronic circuits for power conversion. Principle of</td>
<td></td>
</tr>
<tr>
<td>operation.</td>
<td></td>
</tr>
</tbody>
</table>

Related activities:
- Master class
- Simulation lab exercise
- Problems to solve.

Specific objectives:
DC-DC Conversion: steady-state operation and components sizing

Description:

Related activities:
- Master class
- Simulation lab exercise
- Problems to solve

Specific objectives:

Learning time: 24h
- Theory classes: 8h
- Self study: 16h

Dynamic modeling and control of power converters

Description:
Controlled sources switches modelling. PWM Modulators. Transfer functions deduction. Linear control design

Related activities:
- Master class
- Simulation lab exercise
- Problems to solve

Specific objectives:
Controlled, disturbances and control variables. Characterization of control variables. Models and averaged linearization.
Power Converter linearized model. Limitations. Linear controller design

Learning time: 24h
- Theory classes: 16h
- Self study: 8h

Qualification system

30% Simulation exercises + 30% proposed problems + 40% Final exam
Bibliography

Basic: