230622 - DSAP - Digital Speech and Audio Processing

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree: DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 1992). (Teaching unit Optional)
MASTER’S DEGREE IN INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER’S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Climent Nadeu
Others: Antonio Bonafonte
Javier Hernando

Opening hours
Timetable: Tuesday and Thursday from 10:00 to 13:00

Prior skills
Signal Processing

Requirements
Signal processing

Degree competences to which the subject contributes
Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced
techniques of digital signal processing to communication and audiovisual systems.

Transversal:
2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of
contributing to projects pragmatically and responsibly and making commitments in view of the resources that are
available.
3. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data
and information in the chosen area of specialisation and critically assessing the results obtained.
4. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English,
that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures (50%)
- Application classes (with Matlab or similar) (50%)
- Team work: project, presentation
- Individual work: preparation and completion (out classroom) of application activities

Learning objectives of the subject
Learning objectives of the subject
Understanding and being competent on a relevant set of concepts and techniques in the field of digital audio processing, and their application to problems arising from real applications. Especially, speech and music signals and applications will be considered.

Learning results:
Ability to digitally process, in an application-oriented context, audio and speech signals, in order to analyze, model, extract information from, clean, modify, and generate/synthesize them.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 125h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>39h</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>31.20%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>0.00%</th>
<th>68.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>39h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

1. Introduction

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Course presentation
Audio diversity
Characteristics of speech and music. Production model
Hearing and auditory modeling
The short-time Fourier transform

2. Short-term analysis-synthesis of (quasi)periodic signals

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Filter-bank analysis/synthesis. The phase vocoder
Filter-bank and spectrogram
Time-scale and pitch modification
QMF filters. MP3 coding.

3. Modeling and representation of speech signals

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Production-based all-pole modeling
Pitch determination for speech and music
LPC-based coding used in mobile telephony
4. Enhancement of speech and audio signals

Learning time: 12h
*Theory classes: 6h
Self study: 6h*

Description:
Cancellation: echo, interference
Denoising: spectral subtraction, Wiener-based filtering, wavelets
Blind source separation: ICA, CASA, NMF

5. Multi-microphone audio processing

Learning time: 12h
*Theory classes: 6h
Self study: 6h*

Description:
Room acoustics
Array beamforming
Acoustic source localization and tracking
Specific objectives:

6. Recognition and detection of audio and speech

Learning time: 12h
*Theory classes: 6h
Self study: 6h*

Description:
6. Recognition and detection of audio and speech
Pattern-matching approaches
Audio activity detection
Application to speech and speaker recognition
Projects realization and presentation

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 54h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design, implementation and test of a audio processing system for a specific application</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Oral presentation of 1) Project proposal, and 2) Project realization</td>
<td>Self study: 51h</td>
</tr>
</tbody>
</table>

Qualification system

- Attendance/participation in class (10%)
- Tests (30%)
- Project (50%)
- Presentation (10%)

Bibliography

Basic:

Complementary:

Others resources:

- Lecture slides
- Practical work statements and programs

Audiovisual material

- Slides
 - Slides used in lectures

Computer material

- Codi programes
 - Software codes in Matlab or similar