

Guía docente 240EM141 - 240EM141 - Selección de Materiales en el Diseño Mecánico

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2014). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 4.5 Idiomas: Castellano

PROFESORADO

Profesorado responsable: JOSE MARIA CABRERA MARRERO

Otros:

CAPACIDADES PREVIAS

Microestructura y propiedades mecánicas de materiales

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEM-02. Diseñar y desarrollar productos, procesos, sistemas y servicios, así como la optimización de otros ya desarrollados, atendiendo a la selección de materiales para aplicaciones específicas.

CEMCEM-03. Aplicar métodos innovadores en la resolución de problemas y aplicaciones informáticas adecuadas, para el diseño, simulación, optimización y control de procesos de producción y transformación de materiales.

CEMCEM-07. Diseñar, calcular y modelar aspectos relacionados con los materiales para componentes mecánicos, estructuras y equipos.

Transversales:

01 EIN N3. EMPRENDEDURÍA E INNOVACIÓN - Nivel 3: Utilizar conocimientos y habilidades estratégicas para la creación y gestión de proyectos, aplicar soluciones sistémicas a problemas complejos y diseñar y gestionar la innovación en la organización.

METODOLOGÍAS DOCENTES

La estructura de la asignatura es de 3 ECTS teóricos y 2 ECTS de trabajo en grupos de estudiantes. Se dan clases de la disciplina durante dos horas a la semana. El trabajo en clase se completa con la realización de un pre-proyecto, que será consensuado entre el profesor y grupos de tres-cuatro estudiantes. El proyecto a desarrollar será seguido con el profesor con reuniones de periodicidad semanal, y se completará con la redacción de una memoria, y su defensa oral en clase. Las competencias genéricas que alcanzará el estudiante serán a) capacidad para entender a racionalizar el proceso de selección de materiales, b) capacidad para desarrollar técnicas de fabricación y conocimiento de técnicas de caracterización, c) capacidad de trabajar en equipo en el pre-proyecto y e) capacidad de comunicación escrita y oral técnica

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

objetivos

Fecha: 11/09/2025 Página: 1 / 3

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	40,5	36.00
Horas aprendizaje autónomo	72,0	64.00

Dedicación total: 112.5 h

CONTENIDOS

El proceso de diseño y la toma de decisiones

Descripción:

Etapas del proceso de diseño. Ejemplos.

Dedicación: 3h

Grupo grande/Teoría: 3h

Selección de Materials

Descripción:

Comportamiento y características de los materiales. El proceso de selección de materiales. Métodos de evaluación. Relaciones coste ? propiedades. Efecto de la forma. Ejemplos

Dedicación: 6h

Grupo grande/Teoría: 6h

Procesos de fabricación

Descripción:

Tipos y clasificación de los procesos de fabricación de piezas. Aspectos económicos del procesado

Dedicación: 7h

Grupo grande/Teoría: 7h

Software EDUPACK

Descripción:

introducción al sofwtare EDUPACK

Dedicación: 2h

Grupo grande/Teoría: 2h

Defensa trabajos

Descripción:

Defensa oral treballs pre-projecte

Dedicación: 4h

Grupo grande/Teoría: 4h

Fecha: 11/09/2025 **Página:** 2 / 3

Interacción entre materiales, tecnología de procesado y diseño.

Descripción:

Diseño para piezas:moldeadas, forjadas, estampadas, mecanizadas, sinterizadas, soldadas. El diseño según el comportamiento. Mapas de selección. Ejemplos

Dedicación: 8h

Grupo grande/Teoría: 8h

SISTEMA DE CALIFICACIÓN

La nota final, Nfinal, se calculará de acuerdo a la siguiente ecuación: Nfinal= 0.60Nef + 0.40Nproyecto

Donde Nef es la nota del examen final y Nproyecto es la nota del pre-proyecto

En caso de reevaluación se sustituirá Nef por la nota del examen de reevaluación

BIBLIOGRAFÍA

Básica:

- Ashby, M. F. Materials selection in mechanical design [en línea]. 4th ed. Burlington: Butterworth-Heinemann, 2011 [Consulta: 06/03/2015]. Disponible a: http://www.sciencedirect.com/science/book/9781856176637. ISBN 9781856176637.
- Charles, James Anthony. Selection and use of engineering materials. 3rd ed. Oxford: Butterworth-Heinemann, 1997. ISBN 0750632771.
- Dieter, G. E.; Schmidt, L. C. Engineering design. 6th ed. New York: McGraw-Hill, 2021. ISBN 9781260575279.

Fecha: 11/09/2025 **Página:** 3 / 3