

Guía docente 240EQ321 - 240EQ321 - Biofísica

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 713 - EQ - Departamento de Ingeniería Química.

Titulación: Curso: 2025 Créditos ECTS: 4.5

Idiomas: Castellano

PROFESORADO

Profesorado responsable: LUIS JAVIER DEL VALLE MENDOZA

Otros: Primer quadrimestre:

JUAN AYMAMI BOFARULL - T10

JOSEFA DE LOURDES CAMPOS LOPEZ - T10 LUIS JAVIER DEL VALLE MENDOZA - T10

DOMINGO MARTINEZ DE ILARDUYA SAEZ DE ASTEASU - T10

DAVID ZANUY GOMARA - T10

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 1. Aplicar conocimientos de matemáticas, física, química, biología y otras ciencias naturales, obtenidos mediante estudio, experiencia, y práctica, con razonamiento crítico para establecer soluciones viables económicamente a problemas técnicos.
- 2. Diseñar productos, procesos, sistemas y servicios de la industria química, así como la optimización de otros ya desarrollados, tomando como base tecnológica las diversas áreas de la ingeniería química, comprensivas de procesos y fenómenos de transporte, operaciones de separación e ingeniería de las reacciones químicas, nucleares, electroquímicas y bioquímicas.
- 3. Integrarse con facilidad al equipo técnico interdisciplinar y creativo de cualquier empresa del sector químico o centro de investigación.

Genéricas:

- 4. Capacidad para aplicar el método científico y los principios de la ingeniería y economía, para formular y resolver problemas complejos en procesos, equipos, instalaciones y servicios, en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la industria química y de otros sectores relacionados entre los que se encuentran el farmacéutico, biotecnológico, materiales, energético, alimentario o medioambiental
- 5. Comunicar y discutir propuestas y conclusiones en foros multilingües, especializados y no especializados, de un modo claro y sin ambigüedades.
- 6. Integrar conocimientos y enfrentarse a la complejidad de emitir juicios y toma de decisiones, a partir de información incompleta o limitada, que incluyan reflexiones sobre las responsabilidades sociales y éticas del ejercicio profesional.
- 7. Poseer las habilidades del aprendizaje autónomo para mantener y mejorar las competencias propias de la ingeniería química que permitan el desarrollo continuo de la profesión
- 8. Tener capacidad de análisis y síntesis para el progreso continuo de productos, procesos, sistemas y servicios utilizando criterios de seguridad, viabilidad económica, calidad y gestión medioambiental.

METODOLOGÍAS DOCENTES

Lección magistral.

Aprendizaje autónomo pautado.

Aprendizaje cooperativo

Aprendizaje basado en proyectos, problemas y casos.

Fecha: 11/07/2025 **Página:** 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

La asignatura de Biofísica tiene como objetivo básico proporcionar al alumno conocimientos físicos y fisicoquímicos que gobiernan los sistemas biológicos. En este sentido, en el primer contenido de la asignatura se abordan diversos conceptos de la química-física que tienen relevancia para comprender los procesos fisiológicos y estructurales de los sistemas biológicos. Los siguientes contenidos de la asignatura tratan sobre diversas técnicas de la física y la físicoquímica (p.e., hidródinámica, espectroscopía, dispersión, y difracción, etc.) que se introdujeron en el campo de acción de la biología, y que en la actualidad resultan herramientas indispensables para el estudio de los sistemas biológicos y sus componentes macromoleculares. Finalmente, el último contenido de la asignatura se dedica a la simulación estructural y funcional de las macromoléculas mediante la aplicación de cálculos basados en dinámica molecular.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	72,0	64.00
Horas grupo pequeño	40,5	36.00

Dedicación total: 112.5 h

CONTENIDOS

1. Introducción a la biofísica.

Descripción:

- 1.1) Introducción a la Biomecánica. Cinemática. Dinámica. Trabajo y Energía.
- 1.2) Bases físicas de la circulación y respiración. Hidrostática. Hidrodinámica. Viscosidad. Gases. Difusión y Ósmosis. Transporte a través de membranas biológicas y conducción nerviosa. Propiedades físicas de las membranas. Características básicas de los canales iónicos. Potencial de acción. Axones con mielina.
- 1.3) La termodinámica de los seres vivos. Calor y temperatura. Primera ley de la termodinámica. Segunda ley de la ternodinámica.
- 1.4) Bases físicas de los fenómenos bioeléctricos. Electrostática. Electrodinámica.
- 1.5) Movimiento ondulatorio. Ondas unidimensionales armónicas. Ondas sonoras. Ondas electromagnéticas. Reflexión. Refracción. Interferencia, difracción, polarización. Rayos X. Láser. Óptica.

Objetivos específicos:

Consolidar diferentes conocimientos de la química física en relación a los sistemas biológicos que serán bases para el desarrollo de la asignatura

Actividades vinculadas:

Lecturas recomendadas. Ejercicios y Problemas

Dedicación: 34h Clases teóricas: 7h Clases prácticas: 2h Grupo grande/Teoría: 7h Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 16h

Fecha: 11/07/2025 **Página:** 2 / 5

2. Espectroscopía de absorción, fluorescencia y dicroísmo circular.

Descripción:

- 2.1) Espectroscopía. Espectroscopía UV-Visible: identificación, cuantificación y curvas de fusión de biomacromoléculas. Turbidimetría. Colorimetría.
- 2.2) Dicroísmo circular: análisis de estructura secundaria de biomacromoléculas.
- 2.3) Espectroscopia infrarroja (FTIR): identificación y análisis de estructura secundaria de biomacromoléculas.
- 2.4) Microscopía óptica: perfilometría. Microscopía de fluorescencia: epifluorescencia y confocal.
- 2.5) Citometría de flujo.

Objetivos específicos:

Loa alumnos analizarán y discutirán con fundamentos de la biofísica resultados obtenidos por métodos espectroscópicos sobre la estructura y función de biomoléculas.

Actividades vinculadas:

Ejercicios. Lecturas recomendadas.

Actividad 1. Análisis de macromoléculas por métodos espectroscópicos.

Dedicación: 14h Clases teóricas: 3h Clases prácticas: 1h Grupo grande/Teoría: 3h Grupo mediano/Prácticas: 1h Aprendizaje autónomo: 6h

3. Resonancia magnética nuclear.

Descripción:

3.1) Radioactividad. estructura nuclear, propiedades de los núcleos.

Radioactividad, semivida, dosimetría

- 3.2) Utilización de isótopos radioactivos y no radioactivos en el cuerpo humano. Efectos perjudiciales.
- 3.3) Resonancia magnética nuclear

Objetivos específicos:

Al finalizar este contenido los alumnos deberán ser capaces de analizar un espectro de resonancia mangnética nuclear.

Actividades vinculadas:

Lecturas seleccionadas. Ejercicios y problemas.

Dedicación: 10h Clases teóricas: 2h Clases prácticas: 1h Grupo grande/Teoría: 2h Grupo mediano/Prácticas: 1h Aprendizaje autónomo: 4h

Fecha: 11/07/2025 **Página:** 3 / 5

4. Cristalografía y difracción de rayos X

Descripción:

- 4.1) Cristalización.
- 4.2) Recogida de datos de difracción de rayos X.
- 4.3) Tratamiento de los datos de difracción: determinación del grupo espacial, indexado y escalado de los datos.
- 4.4) Métodos de resolución de estructuras. Refino de estructuras. Mapas de densidad electrónica. Validación de la estructura. Bancos de datos estructurales.

Objetivos específicos:

Conocer la metodología para determinar la estructura de una biomacromolécula por difracción de rayos X de cristal único.

Actividades vinculadas:

Lecturas seleccionadas.

Actividad 2. Determinación de la estructura de una biomacromolécula.

Dedicación: 21h Clases teóricas: 4h Clases prácticas: 2h Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 9h

5. Modelización molecular y determinación estructural basado en dinámica molecular.

Descripción:

- 5.1) Modelización molecular y aplicaciones en bioingeniería.
- 5.2) Energía potencial. Campo de fuerzas. Minimización (técnicas).
- 5.3) Dinámica molecular (MD). Definición. Dinámica clásica. Cálculo de gradientes. Integración numérica. Trayectoria de MD. Aspectos prácticos. Protocolo. Propiedades que pueden calcularse a partir de una MD. Limitaciones. Ejemplos.
- 5.4) Reconocimiento molecular. Propiedades electrostáticas de las biomoléculas. Docking: Cómo saber dónde se enlazará un ligando (algoritmos de búsqueda, funciones de scoring, resultados de clustering, limitaciones, ejemplos). Cálculo de constantes de enlace.

Objetivos específicos:

Capacidad para analizar y comparar diferente información experimental y computacional para la determinación de la estructura y función de las macromoléculas.

Actividades vinculadas:

Actividad 3. Introducción a la simulación estructural de biomoléculas mediante dinámica molecular.

Dedicación: 18h Clases teóricas: 4h Clases prácticas: 1h Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 1h Aprendizaje autónomo: 8h

SISTEMA DE CALIFICACIÓN

La calificación final de la asignatura será calculada de acuerdo a diferentes sistemas de evaluación, lo cuales serán ponderizados de la siguiente forma:

Calificación final = 55% (IE.3) + 40% (IE.4) + 5% (IE.7)

Donde: IE.3) Test al finalizar cada contenido de la asignatura; IE.4) Informes formales de las actividades; e IE.7) Valoración discrecional por los profesores.

Fecha: 11/07/2025 **Página:** 4 / 5

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Los test (IE.3) al finalizar cada contenido de la asignatura serán realizados usando el portal virtual ATENEA basado en Moodle, o en su defecto corresponderá a un examen escrito.

Los alumnos están obligados a presentar los informes formales de las actividades (IE.4).

La calificación de la valoración discrecional (IE.7) será establecida por todos los profesores que participan en la asignatura.

BIBLIOGRAFÍA

Básica:

- Laurendeau, Normand M. Statistical thermodynamics: fundamentals and applications [en línea]. Cambridge: Cambridge University Press, 2005 [Consulta: 21/05/2020]. Disponible a: http://site.ebrary.com/lib/upcatalunya/docDetail.action?docID=10129076. ISBN 9780511139086.
- Freifelder, David. Técnicas de bioquímica y biología molecular. Barcelona: Reverté, 1979. ISBN 8429118195.
- Lesk, Arthur M. Introduction to protein science: architecture, function, and genomics. Oxford, UK: Oxford University Press, 2004. ISBN 0199265119.
- Gómez-Moreno Calera, Carlos; Sancho Sanz, Javier (coords.). Estructura de proteínas. Barcelona: Ariel, 2003. ISBN 8434480616.
- Glusker, Jenny Pickworth; Trueblood, Kenneth N. Crystal structure analysis: a primer. 3rd ed. New York [etc.]: Oxford University Press, 2010. ISBN 9780199576340.
- Drenth, Jan. Principles of protein X-ray crystallography. 3rd ed. New York: Springer science+Business Media, cop. 2010. ISBN 9781441922106.
- Carter, Charles W.; Sweet, Robert M. (eds.). Macromolecular crystallography. Part A. San Diego (Calif.) [etc.]: Academic Press, cop. 1997-2003. ISBN 0121821773.
- Carter, Charles W.; Sweet, Robert M. (eds.). Macromolecular crystallography. Part B. San Diego (Calif.) [etc.]: Academic Press, cop. 1997-2003. ISBN 0121821781.
- Leach, Andrew R. Molecular modelling: principles and applications. 2nd ed. Harlow [etc.]: Prentice Hall, 2001. ISBN 0582382106.
- Schlick, Tamar. Molecular modeling and simulation: an interdisciplinary guide [en línea]. New York, NY: Springer New York, 2010 [Consulta: 21/05/2020]. Disponible a: http://dx.doi.org/10.1007/978-1-4419-6351-2. ISBN 9781441963512.
- Frenkel, Daan; Smit, Berend. Understanding molecular simulation: from algorithms to applications. [2nd ed.]. San Diego [etc.]: Academic Press, cop. 2002. ISBN 0122673514.

Fecha: 11/07/2025 **Página:** 5 / 5