280615 - Ship Theory

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN NAUTICAL SCIENCE AND MARITIME TRANSPORT (Syllabus 2010).
(Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: MARCEL·LA CASTELLS I SANABRA

Opening hours
Timetable: Monday: 10-12
Thursday: 12-14
Friday: 12-14

Degree competences to which the subject contributes

Specific:
1. Knowledge, use and application of the ship from the principles of the theory of the ship.

Teaching methodology

Receive, understand and synthesize knowledge.
Solve problems.
Develop the reasoning and critical thinking

Learning objectives of the subject

Reach a good understanding of the principles of buoyancy and stability of the vessel.
The student begins to calculate weight movements, stability and vessel drafts.

On the other hand, one of the objectives of this subject is provide the knowledge, understanding and proficiency of the competency "Maintain seaworthiness of the ship", and part of the competency "Monitor the loading, stowage, securing, care during the voyage and the unloading of cargoes", competencies required and defined in Section A-II/1 (Mandatory minimum requirements for certification of officers in charge of a navigational watch on ships of 500 gross tonnage or more) of the Seafarers' Training, Certification and Watchkeeping (STCW) International Code.
Study load

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>20h</td>
<td>13.33%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>10h</td>
<td>6.67%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
280615 - Ship Theory

Content

<table>
<thead>
<tr>
<th>Chapter 1. Definitions</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:

Fundamentals of watertight integrity (this knowledge is necessary in accordance with Table AII/1 of STCW Code)

<table>
<thead>
<tr>
<th>Chapter 2. Approximate methods to calculate buoyancy and stability.</th>
<th>Learning time: 26h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:
Calculation of areas, moments, centers of gravity, inertia and volumes. Method of trapezoids and the Simpson's first rule.

<table>
<thead>
<tr>
<th>Chapter 3. Tonnage and maximum load lines.</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:

<table>
<thead>
<tr>
<th>Chapter 4. Drafts</th>
<th>Learning time: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:
Chapter 5. Centre of Gravity

Description:
Weight movements. Using moments to find the center of gravity. TPC

Learning time: 14h
Theory classes: 2h
Practical classes: 2h
Self study: 10h

Chapter 6. Center of Buoyancy

Description:
Isocarenas and isoclines, definition. Properties of the center of buoyancy. Properties of the submerged volume curve.

Learning time: 14h
Theory classes: 2h
Practical classes: 2h
Self study: 10h

Chapter 7. Initial stability

Description:

Learning time: 18h
Theory classes: 6h
Practical classes: 2h
Self study: 10h
The final score is the sum of the following partial grades:

\[N_{\text{final}} = 0.4 \times N_{\text{pf}} + 0.4 \times N_{\text{pp}} + 0.2 \times N_{\text{ac}} \]

- \(N_{\text{final}} \): final score
- \(N_{\text{pf}} \): final exam
- \(N_{\text{pp}} \): partial exam
- \(N_{\text{ac}} \): continuous assessment

Partial and final exam consists of some issues associated with the learning objectives of the course so that respects the knowledge and understanding concepts, and a set of application exercises. The continuous assessment consists of different activities cumulative and formative character, both individual and group, made during the course.

The act of re-evaluation will be done through a final exam where all the course material will be assessed.
Regulations for carrying out activities

You can't pass the course if all work activities and continuous assessment are carried out and submitted.

If the student does not carried out partial and/or final exam, he or she will be considered as: Not Presented

In any case, the student can use any kind of predesigned form in controls or tests.

Bibliography

Basic:

Complementary:

