280641 - Electricity and Electrotechnics

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN MARINE TECHNOLOGIES/BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2016). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN NAVAL SYSTEMS AND TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN MARINE TECHNOLOGIES (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: FRANCISCO DÍAZ-GONZÁLEZ
Others: VICTOR FUSES NAVARRA
JOAN NICOLAS APRUZZESE

Degree competences to which the subject contributes

Specific:
1. Knowledge of circuit theory and electrical characteristics of marine machinery and capacity to implement the operation and operation of the ship of this knowledge.
2. Knowledge of circuit theory and the characteristics of electrical machines and ability to perform calculations for systems involving these elements.

Transversal:
1. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.

Teaching methodology
- Receive, understand and synthesize knowledge.
- Define and solve problems.
- Develop critical thinking and reasoning and defend it both in oral and in writing.
- Perform work individually.

Learning objectives of the subject
- Understand the circuit theory fundamentals.
- Introduction to different types of electric machines and applications.
- Introduction to electrical installations of the ship.
- Be able to compute and solve basic electrical circuits and use equivalent schemes of electrical machines for problem solving and troubleshooting.

Moreover, one objective of this course is to provide knowledge, understanding and proficiency of skills STCW A-III/1:
1. Having a basic understanding of the operation of electrical distribution systems, their components and their protection.
2. Understand the use of electrical equipment for measurement and troubleshooting and maintenance and repair test. Competencies required and defined in Section A-III/1 (Minimum requirements for certification of officers in charge of the watch in unattended machinery or service engineers designated camera unattended machinery (propulsion power of 750 kW or more) of the International Convention on Standards of Training, Certification and Watchkeeping for seafarers.
280641 - Electricity and Electrotechnics

This course will evaluate the following STCW competences:
6. Operate electrical, electronic and control systems
7. Maintenance and repair of electrical and electronic equipment
E1. Monitor the operation of electrical, electronic and control systems

This competence is assessed according to the section "Evaluation " of this record.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group: 40h</th>
<th>26.67%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>5h</td>
<td>3.33%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

Characteristics and laws of electrical circuits

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5h</td>
</tr>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
</tbody>
</table>

Circuit analysis

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge about electrical distribution systems, their components and protection devices. Learn about measure and test devices to detect failures and maintenance and repair operation. (These knowledge are necessary according to STCW Code): Resistors in series and parallel. Voltage and current dividers. Measuring equipment. Thevenin and Norton theorems. Transformation of sources.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5h</td>
</tr>
<tr>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
</tbody>
</table>

Solution of electrical networks

<table>
<thead>
<tr>
<th>Degree competences to which the content contributes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method loops, method nodes.</td>
</tr>
</tbody>
</table>

Dynamic elements

<table>
<thead>
<tr>
<th>Degree competences to which the content contributes:</th>
</tr>
</thead>
</table>
AC circuits analysis

Learning time: 8h
Theory classes: 6h
Laboratory classes: 2h

Description:
Knowledge about electrical distribution systems, their components and protection devices (these knowledge are necessary according to STCW Code):

Three-phase circuits

Learning time: 9h
Theory classes: 6h
Laboratory classes: 3h

Description:
Knowledge about electrical distribution systems, their components and protection devices (these knowledge are necessary according to STCW code):
Three-phase generation systems, load connection star (Y) and delta (Δ), three-phase relationships, monophasic equivalences, star-delta transformation, balanced and unbalanced loads, power measurements.

Electrical installations

Learning time: 3h
Theory classes: 3h

Description:
Knowledge about electrical distribution systems, their components and protection devices (these knowledge are necessary according to STCW code):
Calculation of electrical installations. Shortcircuits.

Protection

Learning time: 5h
Theory classes: 4h
Laboratory classes: 1h

Description:
Knowledge about electrical distribution systems, their components and protection devices (these knowledge are necessary according to STCW code):
Example:
The final mark is the sum of the following qualifications:
\[N_{\text{final}} = 0.4 \times N_{\text{pf}} + 0.4 \times N_{\text{ac}} + 0.2 \times N_{\text{eL}} \]

- \(N_{\text{final}} \): final mark.
- \(N_{\text{pf}} \): final test grade.
- \(N_{\text{ac}} \): continuous assessment grade.
- \(N_{\text{eL}} \): laboratory grade.

The final test includes the concepts associated with the learning objectives of the subject with respect to knowledge or understanding of application exercises. Continuous assessment is cumulative to different activities, both individual and group, with a training goal conducted during the year (in the classroom and outside it).

The rating of laboratory practices is the sum of the following three laboratory activities:
\[N_{\text{eL}} = 0.4 \times N_{\text{pfL}} + 0.4 \times N_{\text{acL}} + 0.2 \times N_{\text{pL}} \]

- \(N_{\text{pfL}} \): final lab grade.
- \(N_{\text{acL}} \): lab continuous assessment.
- \(N_{\text{pL}} \): attendance and lab participation grade.

Reevaluation: Test that includes the concepts and objectives set for the final test.
Regulations for carrying out activities

- Attendance and completion of the hands-on labs is a compulsory requirement.
- If not done any of the lab activities or continuous assessment, the student will be considered as non-rated.
- Will be considered "not present" the one who has not been in the exam or have an overall grade of less than 0.5 points.
- Under no circumstances a student can have any support formular in the tests.

Bibliography

Basic:

Complementary:

Others resources:
- Course notes to ATENEIA