

Guía docente 295023 - ECMA - Estructura y Caracterización de los Materiales

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: GRADO EN INGENIERÍA DE MATERIALES (Plan 2010). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: MARTA PEGUEROLES NEYRA

Otros: MARTA PEGUEROLES NEYRA

NICOLAS CANDAU

JOSE MARIA MANERO PLANELLA JUDIT BUXADERA PALOMERO

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Transversales:

07 AAT N1. APRENDIZAJE AUTÓNOMO - Nivel 1: Llevar a cabo tareas encomendadas en el tiempo previsto, trabajando con las fuentes de información indicadas, de acuerdo con las pautas marcadas por el profesorado.

METODOLOGÍAS DOCENTES

Las clases se impartirán en formato teórico, problemas y prácticas de laboratorio donde se introducirán las competencias específicas de la asignatura. Se realizarán actividades dirigidas presenciales para trabajar la comunicación oral y escrita y el trabajo en equipo. También se fomentará el aprendizaje autónomo y el uso solvente de recursos de información mediante actividades dirigidas no presenciales.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo de la asignatura es que el estudiante adquiera conocimientos sobre los fundamentos de las familias de materiales, su estructura y sus defectos. Además, deberá conocer diferentes técnicas de caracterización microestructural y saber interpretar los resultados obtenidos con estas técnicas.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	51,0	34.00
Horas grupo pequeño	9,0	6.00

Dedicación total: 150 h

Fecha: 06/07/2025 **Página:** 1 / 4

CONTENIDOS

TEMA 1. Materiales de ingeniería

Descripción:

- Ciencia e ingeniería de los materiales.
- Tipos de materiales: metales, cerámicos y vidrios, polímeros, materiales compuestos, semiconductores.
- De la estructura a las propiedades.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 15h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 1h Aprendizaje autónomo: 10h

TEMA 2: El enlace químico

Descripción:

- Enlaces primarios: e. iónico, e. covalente, e. metálicos, e. mixtos
- Enlaces secundarios
- Fuerza y energía de enlace, relación con propiedades de materiales
- Teoría de bandas

Dedicación: 2h

Grupo grande/Teoría: 2h

TEMA 3: Estructura y caracterización de polímeros

Descripción:

- Obtención de los polímeros (reacciones de polimerización). Masa molecular media y técnicas para su determinación.
- Arquitectura molecular (lineal, ramificada y reticulada) y clasificación de los polímeros en termoplásticos, termoestables y elastómeros.
- Estructura de los polímeros (amorfa y semicristalina). Técnicas para la determinación de la temperatura de transición vítrea.
- Estados de agregación.
- Copolímeros.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 20h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 1h Aprendizaje autónomo: 15h

TEMA 4: Estructura cristalina

Descripción:

- Celda unidad.
- Sistemas cristalinos.
- Estructuras cristalinas simples (BCC, FCC, HCP).
- Direcciones y planes cristalográficos. Índices de Miller.
- Intersticios octaédricos y tetraédricos
- Soluciones sólidas metálicas: intersticiales y sustitutivas
- Reglas de Hume-Rothery
- Soluciones sólidas cerámicas

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 35h Grupo grande/Teoría: 9h Grupo mediano/Prácticas: 6h Aprendizaje autónomo: 20h

TEMA 5: Defectos cristalinos

Descripción:

- Defectos en materiales cristalinos (Defectos puntuales, defectos lineales, defectos planares, defectos volumétricos)
- Dislocaciones (Geometría de las dislocaciones y vector de Burguers)
- Movimiento de dislocaciones (deslizamiento de dislocaciones)

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 35h Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 20h

TEMA 6: Análisis de las estructuras cristalinas

Descripción:

- Técnicas de difracción: Difracción de Rayos X (propiedades y fuentes de rayos X, formulación de Bragg, difractómetro de polvo)
- Técnicas espectroscópicas: Espectroscopía infrarroja
- Identificación y análisis de fases cristalinas

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 20h Grupo grande/Teoría: 7h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 10h

TEMA 7: Técnicas experimentales para la identificación de microestructuras y defectos

Descripción:

- Metalografía óptica. Preparación de muestras. Tamaño de grano según la ASTM y determinación del diámetro de grano.
- Microscopía electrónica de barrido (SEM). Técnicas de microscopía electrónica. Modo de electrones secundarios y Modo de emisión por retrodispersión.
- Microscopía electrónica de transmisión (TEM).

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

Dedicación: 25h Grupo grande/Teoría: 7h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 15h

SISTEMA DE CALIFICACIÓN

La calificación del estudiante será:

Nota Final = 0,4*Examen Final + 0,4*Examen Parcial + 0,15*Prácticas laboratorio +0,05*Trabajos

Finalmente, tal y como está previsto en la Normativa de Evaluación y Permanencia en los Estudios de Grado y Máster de la EEBE, se programará un examen de reevaluación para el contenido de los dos exámenes (parcial+final). Para poder acceder a la prueba de reevaluación el estudiante ha de haber suspendido y se tiene que haber presentado a todas las pruebas de evaluación de la asignatura y obtener una nota, N, de la parte reevaluable de la asignatura tal que N > 3,0 (chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/normativa-dava luacio-i-permanencia-curs-2024-2025.pdf)

Nota Final = 0.8*Examen reevaluación + 0.15*Prácticas laboratorio+ 0.05*Trabajos

BIBLIOGRAFÍA

Básica:

- Smith, William Fortune. Fundamentos de la ciencia e ingeniería de materiales [en línea]. 5a ed. Mexico: Mc Graw Hill, 2014 [Consulta: 29/04/2020]. Disponible a: http://www.ingebook.com/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=5732. ISBN 9781456240004
- Callister, William D. Introducción a la ciencia e ingeniería de los materiales [en línea]. México: Reverté, 2013 [Consulta: 23/11/2021]. Disponible a: https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2616389. ISBN 9788429195606.
- Askeland, Donald R. Ciencia e ingeniería de los materiales. Madrid: Thomson, 2001. ISBN 8497320166.
- Shackelford, James F. Introducción a la ciencia de materiales para ingenieros [en línea]. 7a ed. Madrid: Pearson, 2010 [Consulta: 29/04/2020]. Disponible a: http://www.ingebook.com/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=1258. ISBN 9788483229606|.

Complementaria:

- Beeston, BE. Electron diffraction and optical diffraction techniques. Amsterdam [etc.]: North-Holland, 1994. ISBN 0720442532.
- Bermúdez-Polonio, joaquín. Métodos de difracción de rayos X : principios y aplicaciones. Madrid: Pirámide, 1981. ISBN 8436801806.

RECURSOS

Otros recursos:

Material docente disponible en Atenea.