

Guía docente 295122 - 295II332 - Materiales Biofuncionales

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

713 - EQ - Departamento de Ingeniería Química.

Titulación: MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO EN INGENIERÍA INTERDISCIPLINARIA E INNOVADORA (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN TECNOLOGÍAS BIOMÉDICAS AVANZADAS (Plan 2025). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: DANIEL RODRÍGUEZ RIUS

Otros: Primer quadrimestre:

CARLOS ENRIQUE ALEMAN LLANSO - Grup: T11, Grup: T12
CONRADO JOSE APARICIO BADENAS - Grup: T11, Grup: T12
MARIA PAU GINEBRA MOLINS - Grup: T11, Grup: T12
MARIA GODOY GALLARDO - Grup: T11, Grup: T12
CARLOS MAS MORUNO - Grup: T11, Grup: T12
DANIEL RODRÍGUEZ RIUS - Grup: T11, Grup: T12

CAPACIDADES PREVIAS

Conocimiento de Biomateriales.

Conocimientos de química (tanto orgánicos como inorgánicos).

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMUEII-19. Desarrollar aplicaciones traslacionales con el objetivo de alcanzar una mejor comprensión de fenómenos fisiológicos de relevancia clínica y para el diseño de nuevas aplicaciones en áreas que tengan un impacto en el cuidado de la salud de las personas. (Competencia específica de la especialidad Aplicaciones en Salud y Biomedicina / Healthcare and Biomedical Applications) CEMCEAM-03. Realizar estudios de caracterización y evaluación de materiales según sus aplicaciones

Genéricas:

CGMUEII-01. Participar en proyectos de innovación tecnológica en problemas de naturaleza multidisciplinar, aplicando conocimientos matemáticos, analíticos, científicos, instrumentales, tecnológicos y de gestión.

CGMUEII-05. Comunicar hipótesis, procedimientos y resultados a públicos especializados y no especializados de un modo claro y sin ambigüedades, tanto de forma oral como mediante informes, esquemas y diagramas, en el contexto del desarrollo de soluciones técnicas para problemas de naturaleza interdisciplinar.

Fecha: 05/10/2025 **Página:** 1 / 5

Transversales:

05 TEQ. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

RESULTADOS DE APRENDIZAJE

Conocimientos:

- K1. Relacionar conocimientos avanzados de biomecánica, biomateriales, implantes y prótesis para el diseño de dispositivos médicos.
- K3. Relacionar conocimientos avanzados de producto sanitario con conceptos de innovación tecnológica.

Habilidades:

- S1. Elaborar análisis cinemáticos y dinámicos de sistemas biomecánicos mediante el método de los elementos finitos.
- S9. Planificar las fases, tareas y actividades implicadas en el diseño y desarrollo de dispositivos y sensores biomédicos o procesado de datos biomédicos.
- S2. Utilizar adecuadamente las diferentes técnicas de fabricación, análisis y caracterización de biomateriales para su correcta selección y procesado en función de sus propiedades y de la aplicación deseada.

Competencias:

- C3. Identificar y analizar problemas que requieran tomar decisiones autónomas, informadas y argumentadas, para actuar con responsabilidad social, siguiendo valores y principios éticos.
- C5. Utilizar la información científico-técnica para responder a cualquier demanda de modificación, innovación o mejora de dispositivos, productos y procesos ligados a la ingeniería biomédica para nuevas aplicaciones científicas o tecnológicas.

METODOLOGÍAS DOCENTES

La asignatura se divide de la siguiente manera:

- 15% de conferencias.
- 5% seminarios y sesiones de problemas.
- 15% de sesiones de laboratorio.
- 65% de aprendizaje autónomo.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- Comprender los mecanismos biológicos de las interacciones célula-material y sus cascadas de señalización.
- Decida qué tipo de célula se requiere para cada biomaterial dependiendo del tejido/sitio de implantación.
- Discriminar entre los diferentes ensayos in vitro e in vivo y seleccionar el método apropiado para un enfoque específico.
- Ajustar las interacciones biomaterial-tejido a escala macro, micro y nano.
- Evaluar las mejores técnicas de caracterización para analizar una interacción biomaterial-tejido.
- Diseñar métodos de funcionalización de superficies para controlar el comportamiento celular y bacteriano en biomateriales.
- Analizar estrategias para imitar escenarios biológicamente complejos en andamios artificiales.
- Desarrollar procesos de autoensamblaje para obtener estructuras supramoleculares con diversas funciones biológicas.
- Analizar estrategias para diseñar sistemas d'administració de fàrmacs; Concienciación de las interacciones biomaterial-droga.
- Seleccionar las técnicas y métodos de análisis de administración de fármacos más adecuados.
- Diseñar métodos para la generación de hidrogeles inteligentes con respuestas específicas a diferentes estímulos externos.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	108,0	72.00
Horas grupo pequeño	21,0	14.00
Horas grupo grande	21,0	14.00

Fecha: 05/10/2025 **Página:** 2 / 5

Dedicación total: 150 h

CONTENIDOS

Unidad 1: Interacción célula / biomaterial

Descripción:

- La matriz extracelular (MEC): composición y estructura; funciones; síntesis y remodelación; Fibronectina y otras glicoproteínas adhesivas; colágenos y proteínas asociadas al colágeno; proteoglicanos
- Receptores de la superficie celular: integrinas; sindecanos; receptores del factor de crecimiento; Vías de señalización intracelular
- Control extracelular del comportamiento celular: división celular y mitógenos; crecimiento celular y factores de crecimiento; Apoptosis y factores de supervivencia.
- Células madre: origen y tipos; clonación aplicaciones clínicas.
- Respuesta del huésped a los biomateriales: interacción biomaterial-huésped; inflamación; curación; respuesta al cuerpo extraño; biocompatibilidad; Respuesta del huésped a los biomateriales de origen natural.
- Infecciones asociadas a biomateriales: bacterias y biopelículas; Reacción del huésped a la infección.

Objetivos específicos:

- Comprender los mecanismos biológicos de las interacciones célula-material y sus cascadas de señalización.
- Decida qué tipo de célula se requiere para cada biomaterial en función del tejido en el que se implantará.
- Discriminar entre los diferentes ensayos in vitro e in vivo y seleccionar el adecuado para un enfoque específico

Actividades vinculadas:

Debates sobre ponencias y noticias científicas; Presentaciones orales; Pruebas.

Dedicación: 34h Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 4h

Actividades dirigidas: 1h Aprendizaje autónomo: 24h

Unidad 2: Topografia

Descripción:

Introducción:

Rugosidad. Parámetros básicos de rugosidad.

Porosidad. Papel de la porosidad en las interacciones biológicas de los materiales.

Topografía y porosidad multiescala, a escala macro, micro y nano.

Principales técnicas de caracterización (SEM, perfilometría, humectabilidad, interferometría, AFM, MIP, adsorción de gases, microCT).

Objetivos específicos:

- aplicar el conocimiento sobre la topografía y la porosidad para ajustar las interacciones biomaterial-tejido a escala macro, micro y nano
- Evaluar las mejores técnicas de caracterización para analizar una interacción de la superficie biomaterial-tejido

Actividades vinculadas:

Sesiones de laboratorio sobre rugosidad; Ponentes invitados, discusión de publicaciones científicas, debates y presentaciones orales / pósters.

Dedicación: 28h

Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Actividades dirigidas: 2h Aprendizaje autónomo: 18h

Fecha: 05/10/2025 **Página:** 3 / 5

Unidad 3: Biofuncionalización de superficies

Descripción:

- Introducción: limitaciones actuales de los biomateriales; bioinerte frente a bioactividad; Métodos clásicos de funcionalización (plasma-spray, ataque químico, métodos electroquímicos, limpieza con granallado, etc.).
- Métodos físicos: estrategias basadas en plasma para funcionalizar biomateriales; Polimerización asistida por plasma.
- Métodos químicos (I) Recubrimientos inorgánicos: recubrimientos de hidroxiapatita por plasma-spray y electrodeposición; Tratamientos termoquímicos (método Kokubo); Formación de apatita en vivo.
- Métodos químicos (II) Recubrimientos orgánicos: SAMs; polímeros y recombinameros; proteínas; péptidos; peptidomiméticos; dendrímeros y estructuras jerárquicas; nanopartículas; Sistemas multifuncionales.
- Recubrimientos antibacterianos: la "carrera por la superficie"; biopelículas y antibióticos; recubrimientos antifouling; recubrimientos bactericidas (a base de liberación); Recubrimientos bactericidas (inmovilizados).
- Técnicas de caracterización: QCM-D, XPS.

Objetivos específicos:

- Diseñar métodos de funcionalización de superficies para controlar el comportamiento celular en biomateriales.
- Diseñar métodos de funcionalización de superficies para inhibir la adhesión bacteriana en biomateriales.
- Analizar estrategias para imitar escenarios biológicamente complejos en andamios artificiales.

Actividades vinculadas:

- Oradores invitados, discusión de publicaciones científicas, debates y presentaciones orales / pósters.

Dedicación: 34h

Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 4h Actividades dirigidas: 1h Aprendizaje autónomo: 24h

Unidad 4: materiales basados en péptidos

Descripción:

- Fundamentos de la química y física de los materiales peptídicos: estructuras peptídicas en 3D; propiedades ópticas; Confinamiento cuántico y transiciones de fase térmica.
- Peptronics: Transferencia de electrones a través de materiales peptídicos en solución; materiales peptídicos soportados y sus interacciones; transferencia de electrones a través de materiales peptídicos soportados; aplicaciones
- Nanoestructuras de péptidos: arquitecturas moleculares con ensamblaje de péptidos para nanomateriales; bloques de construcción; nanoestructuras impulsadas por la forma; función de los conjuntos peptídicos; estructuras esféricas y dendríticas basadas en péptidos; aplicaciones
- Conjugados peptídicos y materiales híbridos basados en péptidos: conjugados péptido-polímero; copolímeros de bloque; nanotubos de carbono basados en péptidos; polímeros hiperramificados y dendrímeros; aplicaciones
- Técnicas de caracterización: TEM, CD.

Objetivos específicos:

- Analizar estrategias para imitar escenarios biológicamente complejos en andamios artificiales.
- Desarrollar procesos de autoensamblaje para obtener estructuras supramoleculares con diversas funciones biológicas.

Actividades vinculadas:

- Oradores invitados, discusión de publicaciones científicas, debates y presentaciones orales / pósters.

Dedicación: 27h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Actividades dirigidas: 1h Aprendizaje autónomo: 18h

Fecha: 05/10/2025 Página: 4 / 5

Unidad 5: Liberación de fármacos

Descripción:

- Introducción: conceptos básicos en la administración de medicamentos; formulaciones de administración de fármacos convencionales; Administración sistémica vs. local de drogas, vectorización; Tipos de drogas y tipos de portadores; Formulación; Estabilidad.
- Evaluación de la liberación: Métodos para la prueba de drogas (USP). Métodos de análisis para evaluación de liberación (UV-VIS, HPLC). Interpretación de los fenómenos físicos más allá de la liberación.
- Estrategias para la administración de fármacos desde diferentes materiales / implantes:
- Estrategias para incorporar fármacos a implantes y modular la liberación de fármacos, ejemplos: polímeros (películas; sistemas basados en fibra (textiles, endoprótesis vasculares); etc.); Hidrogeles bioinstructivos / inteligentes; Bioceramicas.

Objetivos específicos:

- Analizar estrategias para diseñar sistemas de administración de medicamentos; conocimiento de interacciones biomaterialdroga
- Selección de las técnicas y métodos de análisis de administración de fármacos más adecuados.

Actividades vinculadas:

Pruebas en línea, discusión de publicaciones científicas, debates, presentaciones orales / pósters.

Dedicación: 27h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Actividades dirigidas: 1h Aprendizaje autónomo: 18h

SISTEMA DE CALIFICACIÓN

Pruebas parcial 1: 35% Pruebas parcial 2: 35%

Trabajos individuales evaluables: 10%

Laboratorio: 20%

La asistencia a las prácticas de laboratorio y seminarios es obligatoria para aprobar la asignatura. Esta asignatura no tiene prueba de reevaluación.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

El uso de cualquier equipo electrónico con capacidades de comunicación inalámbrica está estrictamente prohibido en las evaluaciones.

BIBLIOGRAFÍA

Básica:

- Ratner, Buddy; Hoffman, Allan; Schoen, Frederick; Lemons, Jack. Biomaterials science: an introduction to materials in medicine. 3rd ed. Amsterdam: Academic Press, 2013. ISBN 9780123746269.

Complementaria:

- Law, Kock-Yee; Zhao, Hong. Surface wetting : characterization, contact angle, and fundamentals [en línea]. Springer International Publishing, 2016 [Consulta: 14/04/2020]. Disponible a: https://doi.org/10.1007/978-3-319-25214-8. ISBN 9783319252148.
- Haugstad, Greg. Atomic force microscopy: understanding basic modes and advanced applications. John Wiley & Sons, 2012. ISBN 9780470638828.

Fecha: 05/10/2025 **Página:** 5 / 5