

Guía docente 295123 - 295II333 - Bioinformática

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 707 - ESAII - Departamento de Ingeniería de Sistemas, Automática e Informática Industrial.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA INTERDISCIPLINARIA E INNOVADORA (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN TECNOLOGÍAS BIOMÉDICAS AVANZADAS (Plan 2025). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: ALEXANDRE PERERA LLUNA

Otros: Primer quadrimestre:

FLAVIO PALMIERI - Grup: T1

ALEXANDRE PERERA LLUNA - Grup: T1

CAPACIDADES PREVIAS

Nociones básicas de programación

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMUEII-18. Diseñar soluciones innovadoras en biomedicina mediante la utilización de herramientas informáticas de diseño, modelizado y simulación computacional (Competencia específica de la especialidad Aplicaciones en Salud y Biomedicina / Healthcare and Biomedical Applications)

Genéricas:

CGMUEII-01. Participar en proyectos de innovación tecnológica en problemas de naturaleza multidisciplinar, aplicando conocimientos matemáticos, analíticos, científicos, instrumentales, tecnológicos y de gestión.

CGMUEII-05. Comunicar hipótesis, procedimientos y resultados a públicos especializados y no especializados de un modo claro y sin ambigüedades, tanto de forma oral como mediante informes, esquemas y diagramas, en el contexto del desarrollo de soluciones técnicas para problemas de naturaleza interdisciplinar.

Transversales:

05 TEQ. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Fecha: 29/10/2025 **Página:** 1 / 5

RESULTADOS DE APRENDIZAJE

Conocimientos:

K8. Exponer conocimientos avanzados de aplicaciones en salud digital y móvil (mHealth).

Habilidades:

S5. Proponer biomarcadores digitales mediante análisis avanzado de señales biomédicas, técnicas de inteligencia artificial y bioinformática.

Competencias:

C6. Integrar los valores de la sostenibilidad, entendiendo la complejidad de los sistemas, con el fin de emprender o promover acciones que establezcan y mantengan la salud de los ecosistemas y mejoren la justicia, generando así visiones para futuros sostenibles.

METODOLOGÍAS DOCENTES

La metodología docente incluye classes de teoría, sesiones de laboratorio y actividades de aprendizaje autónomo mediante la realización de proyectos prácticos y el análisis de aplicaciones reales.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

-Diseñar adecuadamente un flujo de análisis de datos bioinformáticos, prestando especial atención a las particularidades de los datos que hay que analizar

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	21,0	14.00
Horas aprendizaje autónomo	108,0	72.00
Horas grupo pequeño	21,0	14.00

Dedicación total: 150 h

Fecha: 29/10/2025 **Página:** 2 / 5

CONTENIDOS

Fundamentos de biología

Descripción:

- -Fundamentos de genética
- -Variabilidad genética y enfermedades genéticas
- -Datos genómicos y paisaje genómico
- -Bases de datos genómicas y navegadores

Objetivos específicos:

- -Aprender la influencia de la genética en las enfermedades
- -Conocer los tipos actuales de datos genómicos funcionales: perspectivas genómicas desde 1D hasta 3D
- -Entender las anotaciones básicas de un genoma. Proyecto GENCODE
- -Entender e interpretar la información obtenida mediante un navegador del genoma

Actividades vinculadas:

- -Trabajo en casa 1: análisis de secuencias mRNA usando línea de comandos
- -Laboratorio 1: bases de datos genómicas y navegadores

Dedicación: 18h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 12h

Alineamiento de secuencias

Descripción:

- -Algoritmos de alineamiento locales y globales
- -Búsquedas por similitud en bases de datos
- -Motivos de proteínas

Actividades vinculadas:

- -Entender las implicaciones de realizar un alineamiento local o global
- -Conocer la familia de algoritmos BLAST i las herramientas de alineamiento local
- -Familiarizarse con las matrices de sustitución: familias PAM y BLOSUM
- -Entender los pasos del alineamiento progresivo
- -Identificar los motivos conservados dadas varias secuencias

Dedicación: 26h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 16h

Fecha: 29/10/2025 **Página:** 3 / 5

Análisis de datos transcriptómicos

Descripción:

- -Expresión genética y regulación. Técnicas y herramientas
- -Procesamiento: normalización, filtrado y agrupamiento
- -Bases de datos de expresión genética

Actividades vinculadas:

-Laboratorio 4: chips de ADN (microarrays) -Laboratorio 5: secuenciación de RNA

Dedicación: 26h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 16h

Bases de datos de conocimiento y enriquecimiento de análisis

Descripción:

-Rutas biológicas: KEGG, Reactome

-Ontologías génicas: GO

-Interacciones entre proteínas: STRINGdb

-Enriquecimiento de análisis

Actividades vinculadas:

-Laboratorio 6: rutas biológicas e interacciones entre proteínas -Laboratorio 7: Gene Ontology. Enriquecimiento de análisis

Dedicación: 22h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 12h

Técnicas avanzadas y aplicaciones

Descripción:

- -Proteómica y metabolómica
- -Epigenómica
- -Métodos de aprendizaje automático

Actividades vinculadas:

-Laboratorio 8: proceso de análisis metabolómico

-Trabajo en casa 2: epigenómica

Dedicación: 20h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 16h

SISTEMA DE CALIFICACIÓN

Informes de laboratorio: 40% Trabajo autónomo: 20% Proyecto final: 40%

Fecha: 29/10/2025 **Página:** 4 / 5

BIBLIOGRAFÍA

Básica:

- Compeau, Phillip; Pevzner, Pavel. Bioinformatics algorithms: an active learning approach (Vol. 1). 2nd ed. La Jolla, CA: Active Learning Publishers, 2015. ISBN 9780990374619.
- Compeau, Phillip; Pevzner, Pavel. Bioinformatics algorithms: an active learning approach (Vol. 2). 2nd ed. La Jolla, CA: Active Learning Publishers, 2015. ISBN 9780990374626.

RECURSOS

Enlace web:

- KEGG. KEGG: enciclopedia de Kyoto de genes y genomas
- Reactome. Reactome
- Bioconductor. Bioconductor
- Gene Ontology. Ontología de genes

Fecha: 29/10/2025 **Página:** 5 / 5