

Guía docente 295554 - 295EQ022 - Física de Polímeros

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 713 - EQ - Departamento de Ingeniería Química.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA QUÍMICA (Plan 2019). (Asignatura obligatoria).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: MARIA DEL MAR PÉREZ MADRIGAL

Otros: Primer quadrimestre:

JORDI SANS MILÀ - Grup: T1 JUAN TORRAS COSTA - Grup: T1

CAPACIDADES PREVIAS

Conocimientos básicos en Química Orgánica y Polímeros.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMUEQ-01. Aplicar conocimientos de matemáticas, física, química, biología y otras ciencias naturales, obtenidos mediante estudio, experiencia y práctica, con razonamiento crítico para establecer soluciones viables económicamente a problemas técnicos CEMUEQ-04. Habilidad para solucionar problemas que son poco familiares, incompletamente definidos, y tienen especificaciones en competencia, considerando los posibles métodos de solución, incluidos los más innovadores, seleccionando el más apropiado, y poder corregir la puesta en práctica, evaluando las diferentes soluciones de diseño

Genéricas:

CGMUEQ-01. Capacidad para aplicar el método científico y los principios de la ingeniería y economía, para formular y resolver problemas complejos en procesos, equipos, instalaciones y servicios, en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la industria química y de otros sectores relacionados entre los que se encuentran el farmacéutico, biotecnológico, materiales, energético, alimentario o medioambiental

Transversales:

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

METODOLOGÍAS DOCENTES

MD.1. Contrato de aprendizaje; MD.2. Lección magistral; MD.5. Aprendizaje basado en proyectos, problemas y casos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Fecha: 10/10/2025 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	54,0	36.00
Horas aprendizaje autónomo	96,0	64.00

Dedicación total: 150 h

CONTENIDOS

Caracterización básica.

Descripción:

Métodos espectroscópicos. Aplicaciones de las técnicas de UV, FTIR y NMR. Estereoquímica de polímeros y estudios de secuencias. Aplicaciones cromatográficas. Medias de pesos moleculares. Disolución de polímeros. Parámetros de solubilidad. Teoría de contribuciones de grupos.

Objetivos específicos:

Conocer a los principios físicos relativos a las técnicas empleadas en la caracterización básica de polímeros. Disponer de la capacidad para efectuar una interpretación básica de espectros. Conocer las bases de la cromatografía en hielo y su aplicación para la determinación de pesos moleculares de polímeros. Disponer de la capacidad para seleccionar el mejor solvente para un polímero en particular y familiarizarse con la teoría de contribuciones de grupos para efectuar la predicción de propiedades.

Actividades vinculadas:

Resolución de ejercicios concernientes al análisis de espectros y cromatogramas.

Dedicación: 14h

Grupo grande/Teoría: 6h Aprendizaje autónomo: 8h

Fisicoquímica de polímeros.

Descripción:

Termodinámica de disoluciones concentradas. Separación de fases. Temperatura de Flory. Fraccionamiento. Mezclas de polímeros. Diagrama de fases. Concepto de ovillo estadístico. Interacciones moleculares y volumen excluido. Termodinámica de disoluciones diluidas. Medidas de pesos moleculares: Propiedades coligativas. Viscosidad. Dispersión de luz.

Objetivos específicos:

Conocer los principios teóricos que rigen el comportamiento de los polímeros tanto en disoluciones diluidas como concentradas. Relacionar los conceptos teóricos con su aplicación práctica tanto en procesos de separación y fraccionamiento, como en la caracterización de mezclas o aleaciones, o en la caracterización básica de los materiales poliméricos.

Actividades vinculadas:

Resolución de una colección de problemas prácticos y ejercicios de índole teórica que permitan profundizar en la aplicación de los conceptos introducidos en este apartado.

Dedicación: 36h

Grupo grande/Teoría: 12h Aprendizaje autónomo: 24h

Fecha: 10/10/2025 Página: 2 / 4

El estado sólido. Métodos de caracterización estructural.

Descripción:

El estado amorfo: Interacciones de corto y largo alcance. Dinámica macromolecular. El estado cristalino: Requisitos moleculares y niveles de organización supramolecular. Conformación y empaquetamiento molecular.

Morfologías cristalinas: Lamelas, esferulitas y fibras. Métodos de caracterización estructural: Difracción de rayos X y microscopia electrónica. Microscopia de fuerza atómica.

Objetivos específicos:

Disponer de nociones básicas sobre las interacciones inter e intramoleculares que condicionan la organización molecular tanto al estado amorfo como en el cristalino. Comprender el proceso de cristalización y justificar las morfologías que se derivan del mismo. Familiarizarse con las principales técnicas empleadas en el análisis estructural y ser capaz de seleccionar la más idónea para solucionar un problema concreto.

Actividades vinculadas:

Resolución de ejercicios encaminados a facilitar la comprensión de la organización molecular en el estado cristalino y la deducción de los parámetros estructurales más característicos.

Dedicación: 36h

Grupo grande/Teoría: 12h Aprendizaje autónomo: 24h

Propiedades térmicas de los polímeros. Técnicas de análisis.

Descripción:

Transiciones de primero y segundo orden. Dilatometría. Calorimetría diferencial de potencia compensada. Análisis térmico diferencial. Temperatura de fusión, estructura molecular y composición. Cristalización de polímeros. La transición vítrea.

Objetivos específicos

Relacionar la estructura química y cristalográfica de un polímero con las propiedades térmicas propias tanto del estado amorfo como del cristalino. Familiarizarse con las principales técnicas empleadas en el análisis calorimétrico de un polímero.

Actividades vinculadas:

Interpretación de un conjunto de calorimetrías representativo de diferentes clases de polímeros. hacer ejercicios que introduzcan el análisis de cinéticas de cristalización.

Dedicación: 22h Grupo grande/Teoría: 8h

Aprendizaje autónomo: 14h

Propiedades mecánicas de los polímeros. Técnicas de análisis.

Descripción:

Ensayos mecánicos. Propiedades mecánicas y reológicas. Comportamiento tensión-deformación de los elastómeros. Modelos del comportamiento viscoelàstico. Equivalencia tiempo-temperatura. Técnicas dinamomecánicas. Mecanismos de relajación.

Objetivos específicos:

Disponer de un conocimiento de los diferentes comportamientos mecánicos de los materiales y como estos se relacionan con la estructura y la temperatura de ensayo. Comprender el efecto de la variable tiempo y los mecanismos de relajación. Adquirir un conocimiento sobre las diferentes técnicas de ensayos mecánicos.

Actividades vinculadas:

Resolución de ejercicios representativos prestando una especial atención al comportamiento viscoelástico y las propiedades reológicas en general.

Dedicación: 22h Grupo grande/Teoría: 8h Aprendizaje autónomo: 14h

Fecha: 10/10/2025 Página: 3 / 4

Propiedades específicas. Sistemas Multicomponentes.

Descripción:

Propiedades eléctricas y ópticas de los polímeros. Materiales adhesivos. Difusión y permeabilidad: membranas. Materiales compuestos multicomponentes: Módulo de Young. Mecanismos de pérdida de propiedades mecánicas.

Objetivos específicos:

Disponer de un conocimiento genérico sobre las propiedades específicas de los polímeros que justifican su utilización como materiales ópticos, conductores o membranas. Introducir el estudio de materiales multicomponentes y comprender su interés para la mejora de propiedades específicas.

Actividades vinculadas:

Trabajo individual sobre las propiedades de un determinado material, correlacionándolas con los conocimientos adquiridos sobre su estructura.

Dedicación: 20h Grupo grande/Teoría: 8h Aprendizaje autónomo: 12h

SISTEMA DE CALIFICACIÓN

IE.1. Examen escrito, IE.3. Cuestiones, test, problemas, mini informes.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Se efectuarán dos exámenes durante el curso representando cada uno de ellos un 25% de la calificación global; la presentación de informes y problemas propuestos le corresponderá un 30% y la realización del trabajo monográfico el 20%. No habrá examen de reevaluación.

BIBLIOGRAFÍA

Básica:

- Sperling, Leslie Howard. Introduction to physical polymer science. 4th ed. Hoboken, N.J.: Wiley, cop. 2006. ISBN 9780471706069.
- Painter, Paul C; Coleman, Michael M. Essentials of polymer science and engineering. Lancaster: DEStech Publications, cop. 2009. ISBN 9781932078756.

Complementaria:

- Strobl, Gert. The Physics of polymers: concepts for understanding their structures and behavior [en línea]. 3rd. Berlin; London: Springer Verlag, cop. 2007 [Consulta: 13/05/2020]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=3062750. ISBN 9783540252788.
- Fried, Joel R. Polymer science and technology. 3rd ed. Upper Saddle River: Prentice Hall, cop. 2014. ISBN 9780137039555.
- Reiter, G; Strobl, Gert (eds.). Progress in understanding of polymer crystallization [en línea]. Berlin; London: Springer, cop. 2007 [Consulta: 13/05/2020]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=3036604. ISBN 9783540473053.
- Wunderlich, Bernhard. Thermal analysis of polymeric materials: with 974 figures. New York: Springer Heidelberg, cop. 2005. ISBN 3540236295.
- Ward, Ian Macmillan; Sweeney, J. An introduction to the mechanical properties of solid polymers. 2nd ed. Chichester: John Wiley & Sons, cop. 2004. ISBN 047149626X.

Fecha: 10/10/2025 Página: 4 / 4