

Guía docente 295623 - 295MB023 - Diseño de Dispositivos Médicos: Tecnologías Usables en la Salud

Última modificación: 19/09/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: MÁSTER UNIVERSITARIO EN TECNOLOGÍAS BIOMÉDICAS AVANZADAS (Plan 2025). (Asignatura

obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas:

PROFESORADO

Profesorado responsable: Nescolarde Selva, Lexa Digna

Otros: Nescolarde Selva, Lexa Digna

Ramos Castro, Juan Jose

CAPACIDADES PREVIAS

Conocimientos de programación C, Phyton, electrónica básica, instrumentación electrónica y procesamiento de señales biomédicas. Se recomienda haber superado Sensores y Acondicionadores de Señal, Seguridad Hospitalaria, Fisiología y Procesamiento de Señales Biomédicas.

RESULTADOS DE APRENDIZAJE

Conocimientos:

- K4 . Describir conocimientos avanzados de instrumentación biomédica para el diseño de tecnologías usables (wearables), sensores inteligentes y biosensores.
- K8. Exponer conocimientos avanzados de aplicaciones en salud digital y móvil (mHealth).
- K3 . Relacionar conocimientos avanzados de producto sanitario con conceptos de innovación tecnológica.
- K2 . Reconocer estructuras avanzadas de análisis de datos y modelización.
- K7 . Inferir conocimientos avanzados en biomarcadores digitales y técnicas de inteligencia artificial en tecnologías de la salud.

Habilidades:

- S3 . Diseñar equipos médicos usables teniendo en cuenta los principios, diseño, análisis de riesgos y validación de los equipos médicos usables.
- S10 . Utilizar las herramientas de análisis habituales en el mundo de la innovación tecnológica para evaluar oportunidades de negocio y elaborar propuestas de innovación en el campo de las Tecnologías Biomédicas.
- S9 . Planificar las fases, tareas y actividades implicadas en el diseño y desarrollo de dispositivos y sensores biomédicos o procesado de datos biomédicos.
- S5 . Proponer biomarcadores digitales mediante análisis avanzado de señales biomédicas, técnicas de inteligencia artificial y bioinformática.
- S6 . Interpretar datos biomédicos mediante técnicas de análisis de datos, aprendizaje automático ("machine learning") y aprendizaje profundo ("deep learning").

Fecha: 17/11/2025 **Página:** 1 / 5

Competencias:

- C2 . Aplicar las metodologías apropiadas de gestión de proyectos y de equipos, productos y tecnologías biomédicas, en función del tipo de proyecto.
- C3 . Identificar y analizar problemas que requieran tomar decisiones autónomas, informadas y argumentadas, para actuar con responsabilidad social, siguiendo valores y principios éticos.
- C1 . Asumir responsabilidades en equipos de trabajo en la gestión de la producción, ya sea como un miembro más o realizando tareas de dirección o liderazgo.
- C4 . Usar de forma solvente los recursos de información, gestionando la adquisición, estructuración, análisis y visualización de datos e información en el ámbito de su especialidad y valorando de forma crítica los resultados de esta gestión.
- C5 . Utilizar la información científico-técnica para responder a cualquier demanda de modificación, innovación o mejora de dispositivos, productos y procesos ligados a la ingeniería biomédica para nuevas aplicaciones científicas o tecnológicas.
- C7 . Desarrollar la capacidad de evaluar las desigualdades por razón de sexo y género, para diseñar soluciones.

METODOLOGÍAS DOCENTES

- Clases expositivas.
- Actividades de trabajo cooperativo.
- Aprendizaje autónomo.
- Aprendizaje basado en proyectos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Conocer los principios, diseño, análisis de riesgos y validación de los equipos médicos usables.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	42,0	28.00
Horas aprendizaje autónomo	94,0	62.67
Horas grupo pequeño	14,0	9.33

Dedicación total: 150 h

CONTENIDOS

Introducción

Descripción:

- 1. Definición.
- 2. Tipo de wearables.
- 3. Estructura/características de un dispositivo médico usable.

Dedicación: 14h Grupo grande/Teoría: 4h Aprendizaje autónomo: 10h

Fecha: 17/11/2025 **Página:** 2 / 5

Sistemas de alimentación

Descripción:

- 1. Baterías.
- 2. Energía solar.
- 3. Energía térmica.
- 4. Energía cinética.
- 5. Energía electromagnética.

Actividades vinculadas:

Laboratorio: práctica 1

Dedicación: 20h

Grupo grande/Teoría: 6h Actividades dirigidas: 2h Aprendizaje autónomo: 12h

Sistemas de control programables

Descripción:

- 1. Microprocesador.
- 2. Microcontrolador.
- 3. FPGA.
- 4. SoC.

Actividades vinculadas:

Laboratorio: práctica 2

Dedicación: 24h

Grupo grande/Teoría: 8h Actividades dirigidas: 2h Aprendizaje autónomo: 14h

Sistemas de comunicación

Descripción:

- 1. Corto alcance
- -RFID, NFC
- 2. Alcance medio
- -Bluetooth, Wi-Fi
- 3. Largo alcance
- -LoRa, Sigfox, 4G, 5G

Actividades vinculadas:

Laboratorio: práctica 3

Dedicación: 23h

Grupo grande/Teoría: 6h Actividades dirigidas: 2h Aprendizaje autónomo: 15h

Fecha: 17/11/2025 **Página:** 3 / 5

Sensores

Descripción:

- 1. Magnitudes físicas
- Temperatura, humedad, presión, movimiento, radiación
- 2. Magnitudes fisiológicas
- ECG, EEG, EMG, SpO2

Actividades vinculadas:

Laboratorio: práctica 4

Dedicación: 22h

Grupo grande/Teoría: 5h Actividades dirigidas: 2h Aprendizaje autónomo: 15h

Desarrollo de sistemas

Descripción:

- 1. Etapas de desarrollo.
- 2. Normativa.
- 3. Gestión de riesgos.
- 4. Desarrollo de hardware y SW.
- Placa de desarrollo.
- Entorno de programación.
- Repositorio.
- Acceso a la nube.
- 5. Gestión de proyectos.

Actividades vinculadas:

Proyecto: sesión 1 y 2

Dedicación: 28h

Grupo grande/Teoría: 8h Actividades dirigidas: 4h Aprendizaje autónomo: 16h

Servicios en la nube

Descripción:

- 1. Introducción.
- 2. Protocolos.
- 3. Seguridad.

Actividades vinculadas:

Proyecto: sesión 3

Dedicación: 19h

Grupo grande/Teoría: 5h Actividades dirigidas: 2h Aprendizaje autónomo: 12h

Fecha: 17/11/2025 **Página:** 4 / 5

SISTEMA DE CALIFICACIÓN

Prácticas de Laboratorio (L) = 20% Proyecto (P) = 30% Seminarios (S) = 15% Examen Final (EF) = 35% Nota final (Nf): 0.20*L + 0.30*P + 0.15*S + 0.50*EF

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

- 1. Habrá evaluación de actividades dirigidas (presenciales o no-presenciales) correspondientes a la entrega de trabajos de laboratorio (tipo L).
- 2. Habrá un examen final (EF), de un máximo de 2h de duración, que constará de preguntas relacionadas con conocimientos teóricos del temario de la asignatura y dirigidas a valorar los objetivos de aprendizaje alcanzados por el estudiante.
- 3. Habrá un proyecto desarrollado a lo largo del cuatrimestre sobre el diseño y desarrollo de dispositivos médicos usables desde la concepción del dispositivo, estudio de mercado, aplicabilidad, normativa e implementación.

No habrá examen de reevaluación en esta asignatura.

BIBLIOGRAFÍA

Rásica:

- Dey, Nilanjan; Ashour, Amira S.; Fong, Simon James; Bhatt, Chintan. Wearable and implantable medical devices: applications and challenges [en línea]. London, England: Academic Press, [2020] [Consulta: 10/09/2025]. Disponible a: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780128153697/wearable-and-implantable-medical-devices. ISBN 9780128156377.
- Delabrida Silva, Saul Emanuel; Rabelo Oliveira, Ricardo Augusto; Ferreira, Antonio Alfredo. Examining developments and applications of wearable devices in modern society [en línea]. Hershey: IGI Global, 2018 [Consulta: 10/09/2025]. Disponible a: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=4983644. ISBN 9781522532903.
- Sazonov, Edward. Wearable sensors : fundamentals, implementation and applications [en línea]. Second edition. London, England: A c a d e m i c Press, 2021 [Consulta: 10/09/2025]. Disponible a: https://www-sciencedirect-com.recursos.biblioteca.upc.edu/book/9780128192467/wearable-sensors. ISBN 978-0128192467.
- Deitel, Paul J.; Deitel, Harvey M. C++: how to program. Ninth edition. Boston: Pearson Education, 2014. ISBN 9780133378795.
- Wilson, Denise. Wearable solar cell systems [en línea]. Boca Raton: CRC Press, 2019 [Consulta: 10/09/2025]. Disponible a: https://www-taylorfrancis-com.recursos.biblioteca.upc.edu/books/mono/10.1201/9780429399596/wearable-solar-cell-systems-denise-wilson. ISBN 9780429399596.

Complementaria:

- Circuits and systems for wearable technologies : IEEE UKCAS 2019. Aalborg, Denmark: River Publishers, 2019. ISBN 9788770221320.
- Mackenzie, Brian; Galpin, Andy; White, Phil. Unplugged. Las Vegas: Victory Belt Publishing, 2017. ISBN 9781628602616.
- Sullivan, Scott. Designing for wearables: effective UX for current and future devices [en línea]. Sebastopol: O'Reilly, 2017 [Consulta: 10/09/2025]. Disponible a: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=4773

https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=4773464. ISBN 9781491944158.

- McCann, Jane; Bryson, David. Smart clothes and wearable technology. Boca Raton: Cambridge: CRC, 2009. ISBN 9781845693572.

RECURSOS

Otros recursos:

Material de clase disponible en ATENEA

Fecha: 17/11/2025 **Página:** 5 / 5