Course guide 295701 - MAME - Metallic Materials **Last modified:** 14/06/2023 Unit in charge: Barcelona East School of Engineering **Teaching unit:** 702 - CEM - Department of Materials Science and Engineering. Degree: BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject). Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish, English #### **LECTURER** Coordinating lecturer: JAIRO ALBERTO MUÑOZ BOLAÑOS **Others:** Primer quadrimestre: PERE BARRIOBERO VILA - Grup: M11, Grup: M12 JAIRO ALBERTO MUÑOZ BOLAÑOS - Grup: M11, Grup: M12 BLAS SORITA LLEDO - Grup: M11, Grup: M12 ## **PRIOR SKILLS** Knowledge of physical metallurgy # **REQUIREMENTS** METAL.LÚRGIA FÍSICA - Precorequisit ## **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES** ## **Specific:** - 1. Knowledge on several types of materials' structure, as well as analysis characterisation and techniques of materials. - 2. Knowledge on mechanical, electronic, chemical and biologic behaviour of materials, and capacity to apply this behaviour into design, calculation and modelling of aspects of elements, components and equipment. - 3. Knowledge and application of materials' technology in the following fields: production, transformation, processing, selection, control, maintenance, recycling, and storage of any type of materials. - 4. Knowledge of science, technology and materials' chemistry fundaments. Understanding the relation between microstructure, synthesis or processing and materials' properties. #### Transversal: 07 AAT N3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources. # **TEACHING METHODOLOGY** This course will have a part of theory lectures, problems and lab practices. The theory lectures will mainly be given as exhibitions, whereas the problem lectures and lab practices will be participative and cooperative. **Date:** 14/10/2023 **Page:** 1 / 4 # **LEARNING OBJECTIVES OF THE SUBJECT** The main objective of the subject is that the student acquires a wide vision of the metallic alloys interesting for industrial use. The most common ferrous and non-ferrous alloys will be described emphasising its mechanical properties, thermal treatments and transformation processes most characteristics for all the family. By the end of the course the student will have to be able to: - Classify the main families of metallic materials and its alloys and compare its mechanical and physical properties. - Describe the hardening mechanisms for each material and control them to achieve the properties wished - Describe and formulate extraction and process means for the manufacturing of metallic components with structural usefulness # **STUDY LOAD** | Туре | Hours | Percentage | |-------------------|-------|------------| | Guided activities | 90,0 | 60.00 | | Hours small group | 15,0 | 10.00 | | Hours large group | 45,0 | 30.00 | Total learning time: 150 h #### **CONTENTS** ## **Lesson 1 - Introduction** #### **Description:** Classification of metals and its main alloys. Description of the main characteristics of the different metallic families. **Full-or-part-time:** 3h Theory classes: 2h Self study: 1h #### Lesson 2 - Ferrous alloys # **Description:** Fe-C phase diagram and phase transformations in steels. TTT and CCT diagrams . Thermal treatments. General steels for construction. Steel for sheets. Steel for tools. Stainless steel. Cast iron. Full-or-part-time: 56h Theory classes: 12h Practical classes: 5h Laboratory classes: 6h Self study: 33h # Lesson 3 - Cooper and its alloys # **Description:** Pure cooper. Brass, alloys and applications. Bronze, alloys and applications. Other cooper alloys. Full-or-part-time: 29h Theory classes: 5h Practical classes: 3h Laboratory classes: 3h Self study: 18h # Lesson 4 - Light alloys #### **Description:** Wrought Aluminium alloys, heat treatable and non-heat treatable. Cast alloys. Alfa titanium alloys and their applications. Alfa+beta titanium alloys and their applications. Beta titanium alloys and their applications. Main cast and wrought magnesium alloys Magnesium applications. Full-or-part-time: 35h Theory classes: 6h Practical classes: 3h Laboratory classes: 6h Self study: 20h ## **Lesson 5 - Superalloys** #### **Description:** Nickel and cobalt base alloys. Aging principles in superalloys. Directional and single crystals solidification. **Full-or-part-time:** 9h Theory classes: 2h Practical classes: 1h Self study: 6h ## **Lesson 6 - Other families of metallic materials** ## **Description:** Zinc base alloys. Tin base alloys. Lead base alloys. Heat resistant metals. Metallic glasses. Intermetallic . **Full-or-part-time:** 18h Theory classes: 3h Practical classes: 3h Self study: 12h ## **GRADING SYSTEM** 50% final exam + 20% midterm exam + 15 % Laboratory practices + 15% Activities proposed during the lectures # **EXAMINATION RULES.** There will be two exams, partial and final. The practices will also be assessed based on the reports the students will have to make. The activities proposed by the professor will be problems or activities oriented to work a specific subject. These activities will have to be done at home or during the lecturing time in the class. There will be between 3 and 5 activities during the whole semestre. **Date:** 14/10/2023 **Page:** 3 / 4 # **BIBLIOGRAPHY** #### Basic: - Avner, Sidney H. Introducción a la metalurgia física. 2ª ed. México; Madrid: McGraw Hill, 1979. ISBN 9686046011. - Polmear, I. J. Light Alloys: from traditional alloys to nanocystals [on line]. 4th ed. Amsterdam: Elsevier, cop. 2006 [Consultation: 29/05/2020]. Available on: http://www.sciencedirect.com/science/book/9780750663717. ISBN 9780750663717. - Bhadeshia, H. K. D. H.; Honeycombe, R. W. K. Steels: microstructure and properties [on line]. 3rd ed. Amsterdam: Elsevier, cop. 2006 [Consultation: 29/05/2020]. Available on: http://www.sciencedirect.com/science/book/9780750680844. ISBN 9780750680844. - Callister, William D. Introducción a la ciencia e ingeniería de los materiales [on line]. 2a ed. México: Limusa Wiley, 2009 [Consultation: 24/11/2021]. Available on: $\underline{https://search.ebscohost.com/login.aspx?direct=true\&scope=site\&db=nlebk\&db=nlabk\&AN=2616389}.~ISBN~9786075000251.$ ## **RESOURCES** #### **Audiovisual material:** - http://www.steeluniversity.org/content/html/eng/default.asp?catid=1&pageid=1016899460