

Guía docente 295705 - RMP - Reciclaje y Materias Primas

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: GRADO EN INGENIERÍA DE MATERIALES (Plan 2010). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: Ruperez De Gracia, Elisa

Otros: Segon quadrimestre:

JONATHAN CAILLOUX - M11, M12

VIOLETA DEL VALLE GARCÍA MASABET - M11, M12

MAGALI KLOTZ - M11, M12

MARIA LLUÏSA MASPOCH RULDUA - M11, M12 ELISA RUPEREZ DE GRACIA - M11, M12

CAPACIDADES PREVIAS

Se requieren conocimientos básicos de química, formulación y termodinámica de reacciones químicas, así como de las principales características de las diferentes familias de materials.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

 $\hbox{\it CEI-16. Conocimientos básicos y aplicación de tecnologías medioambientales y sostenibilidad.}$

CEMT-22. Conocimiento y aplicación de la tecnología de materiales en los ámbitos de producción, transformación, procesado, selección, control, mantenimiento, reciclado y almacenamiento de cualquier tipo de materiales.

Transversales:

02 SCS N2. SOSTENIBILIDAD Y COMPROMISO SOCIAL - Nivel 2: Aplicar criterios de sostenibilidad y los códigos deontológicos de la profesión en el diseño y la evaluación de las soluciones tecnológicas.

METODOLOGÍAS DOCENTES

Las actividades presenciales consisten en:

- Clases teóricas en las que se presentan los contenidos relacionados con los diferentes bloques del temario
- Sesiones de laboratorio en las que se realizan prácticas relacionadas con los contenidos teóricos
- Visitas a empresas: con el fin de conocer con más detalle algunos de los conceptos teóricos explicados en clase
- Exposición en el aula de los trabajos tutorizados.
- · Actividad no presencial: Los estudiantes realizan en grupo un trabajo monográfico sobre la extracción de metales, reciclaje de materiales o tratamiento de residuos.

Fecha: 06/07/2025 **Página:** 1 / 6

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El principal objetivo de la asignatura es que el alumno tenga la capacidad de valorar el impacto medioambiental asociado a la extracción de los materiales a partir de los recursos naturales y las ventajas del reciclaje con el fin de lograr un ecosistema sostenible con un uso racional de los recursos naturales no renovables.

Al final del curso el estudiante debe:

- Conocer adecuadamente el análisis del ciclo de vida como herramienta de gestión medioambiental para evaluar el impacto ambiental asociado a un producto durante su ciclo de vida completo.
- Tener presente la optimización e innovación en los procesos de extracción y reciclaje de materiales con tal de disminuir el impacto medioambiental
- Ser consciente de la importancia que tiene una óptima gestión de residuos y la valorización de los residuos no recuperables en el impacto medioambiental.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	50,0	33.33
Horas grupo pequeño	10,0	6.67
Horas aprendizaje autónomo	90,0	60.00

Dedicación total: 150 h

CONTENIDOS

TEMA 1. Introducción al reciclaje

Descripción:

- 1. Los materiales a lo largo de la historia. Producción anual en el mundo.
- 2. Ciclo de vida de un material.
- 3. Historia del reciclaje. Las 3 R: reduccir, reutilizar y reciclar.
- 4. Tipos y gestión de residuos
- 5. Economía circular

Dedicación: 4h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 3h

Tema 2. Análisis del ciclo de vida (ACV). Principios de ecodiseño

Descripción:

¿Qué es el ACV? Breve cronología del desarrollo del ACV Puntos Fuertes y límites del ACV Casos prácticos de aplicación del ACV

Dedicación: 5h 30m Grupo grande/Teoría: 3h Aprendizaje autónomo: 2h 30m

Fecha: 06/07/2025 **Página:** 2 / 6

Tema 3. Consumo de plásticos y residuos

Descripción:

Consumo mundial y europeo de materiales plásticos, evolución en los últimos años.

Consumo por tipos de material y mercado

Tipología de los residuos

Gestión de los residuos de plástico

Alternativas a los residuos de plástico: 3 R Tipos de revalorización de residuos plásticos.

Revalorización de residuos plásticos en los países de la UE

Dedicación: 6h 30m

Grupo grande/Teoría: 1h 30m Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 3h

Tema 4. Reciclado de plásticos

Descripción:

Tipos de reciclado y sus limitaciones

Degradación y aditivación

Relación entre separación y calidad del reciclado: experiencias recientes

Carcaterización de plásticos reciclados

Casos prácticos de revalorización de residuos de plásticos.

Actividades vinculadas:

Práctica de laboratorio:

- Índice de fluidez (MFI)
- Reciclado mecánico de residus plásticos (tapones de botelles)

Dedicación: 14h

Grupo grande/Teoría: 5h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 5h

Tema 5. Ecodiseño

Descripción:

Principios de ecodiseño Casos prácticos

Dedicación: 2h

Grupo grande/Teoría: 1h Aprendizaje autónomo: 1h

Fecha: 06/07/2025 **Página:** 3 / 6

Tema 6. TEMA 5: Alternativas a los plásticos convencionales

Descripción:

Plásticos bio-basados Plásticos bio-degradables Tipos de degradación Evaluación (examen) de 1ª parte del curso (1.5h)

Dedicación: 5h 30m Grupo grande/Teoría: 4h 30m Aprendizaje autónomo: 1h

Tema 7. Reciclaje de residuos sólidos urbanos. Tecnología y procesos.

Descripción:

- Clasificación de los residuos
- Tecnología de tratamientos de residuos y de reciclaje.

Actividades vinculadas:

Visita a la empresa pública TERSA dedicada a gestionar servicios medioambientales relacionados con la economía circular, la valorización de residuos municipales, la generación y comercialización de energías renovables.

Dedicación: 6h 30m

Grupo grande/Teoría: 1h 30m Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 3h

Tema 8. Introducción a la metalurgia extractiva: pirometalurgia

Descripción:

- Metalurgia extractiva: Pirometalurgia e hidrometalurgia
- Pirometalurgia calcinación, tostación de sufuros y reducción de óxidos. Diagramas de Ellingham
- Pirometalurgia : metalotermia y electrólisis ígnea

Actividades vinculadas:

- Ejercicios relacionados con los Diagramas de Ellingham
- Práctica 3. Recuperación de metales nobles: copelación

Dedicación: 15h 30m Grupo grande/Teoría: 4h 30m Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 9h

Fecha: 06/07/2025 **Página:** 4 / 6

Tema 9. Extracción y reciclaje del acero. Ejemplo de proceso pirometalúrgico.

Descripción:

- Metalurgia primaria: extracción del acero a partir del mineral. Análisis del Impacto medioambiental
- Metalurgia secundaria: recuperación del acero a partir de la chatarra. Análisis del Impacto medioambiental
- La colada contínua

Actividades vinculadas:

Visita a la acería de CELSA: los alumnos tendrán la oportunidad de ver con detalle todo el proceso de obtención del acero a partir de la chatarra

Dedicación: 11h Grupo grande/Teoría: 3h Grupo mediano/Prácticas: 2h Aprendizaje autónomo: 6h

Tema 10. Introducción a la metalurgia extractiva: hidrometalurgia

Descripción:

- Procesos de lixiviación: estática y dinámica
- Procesos de extracción:
- · Precipitación de un compuesto
- · Extracción con disolventes orgánicos
- · Intercambio iónico
- · Adsorción con carbón activo

Dedicación: 4h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 3h

Tema 11. Extracción y reciclado del aluminio

Descripción:

- Extracción del aluminio a partir de la bauxita:
- · Proceso Bayer: Obtención de alúmina a partir de la bauxita
- · Proceso Hall-Heroult: electrolisis ignea de la alúmina
- Reciclaje del aluminio
- Impacto medioambiental

Actividades vinculadas:

Análisis de artículos de investigación sobre procesos alternativos a la extracción del aluminio para reducir el impacto medioambiental

Dedicación: 9h

Grupo grande/Teoría: 3h Aprendizaje autónomo: 6h

Fecha: 06/07/2025 **Página:** 5 / 6

Tema 12: Extacción del otros metales: titanio, magnesio y cobre

Descripción:

- Obtención del titanio: Proceso Kroll y métodos alternativos
- Obtención del magnesio:
- por electrólisis: Método Dow y proceso SOM
 por reducción térmica: proceso Pidgeon
- Obtención del cobre: procesos pirometalúrgico e hidrometalúrgico
- Impacto medioambiental

Actividades vinculadas:

Análisis de artículos de investigación que tratan sobre procesos alternativos a la extracción del titanio y magnesio.

Dedicación: 18h Grupo grande/Teoría: 6h Aprendizaje autónomo: 12h

Tema 13. Reciclaje de materiales cerámicos y vidrios

Descripción:

Tema 10. Reciclaje de materiales cerámicos y vidrios

Dedicación: 4h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 3h

SISTEMA DE CALIFICACIÓN

Primer parcial: 20% Segon parcial: 40%

Prácticas + informes visitas: 20 % Trabajo monográfico: 20%

NO HAY REEVALUACIÓN

BIBLIOGRAFÍA

Básica:

- Ashby, M. F. Materials and the environment: eco-informed material choice. 2a ed. Amsterdam: Elsevier/Butterworth-Heinemann, 2013. ISBN 9780123859716.
- Ballester, Antonio; Verdeja, Luis Felipe; Sancho José. Metalurgia extractiva. Vol. 1. Madrid: Síntesis, DL, 2003. ISBN 8477388024.
- Ballester, Antonio; Verdeja, Luis Felipe; Sancho José. Metalurgia extractiva. Vol. 2. Madrid: Síntesis, DL, 2003. ISBN 8477388032.

Complementaria:

- Worrell, Ernst; Reuter, Markus. Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists [en línea]. U.K.: Elsevier, 2014 [Consulta: 10/06/2020]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=1683293. ISBN 9780123965066.

RECURSOS

Otros recursos:

Software CES Edupack 2018

Fecha: 06/07/2025 **Página:** 6 / 6