

Guía docente 295707 - MEF - Metalurgia Física

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: GRADO EN INGENIERÍA DE MATERIALES (Plan 2010). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: JAIRO ALBERTO MUÑOZ BOLAÑOS

Otros: Primer quadrimestre:

CASIMIR CASAS QUESADA - Grup: M21, Grup: M22 JAIRO ALBERTO MUÑOZ BOLAÑOS - Grup: M21, Grup: M22

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 1. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.
- 3. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Transversales:

04 COE N1. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 1: Planificar la comunicación oral, responder de manera adecuada a las cuestiones formuladas y redactar textos de nivel básico con corrección ortográfica y gramatical.

METODOLOGÍAS DOCENTES

Durante el curso se imparten clases teóricas, de problemas y prácticas de laboratorio, que combinado con el aprendizaje autónomo, permitirá relacionar los conocimientos adquiridos y alcanzar los objetivos previstos. Las clases teóricas serán fundamentalmente expositivas mientras que las de problemas y prácticas serán participativas y cooperativas. Se realizan dos exámenes, y se evalúan las prácticas y las sesiones de problemas.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo de la asignatura es que el estudiante adquiera conocimientos básicos sobre la metalurgia física involucrada en la solidificación y transformaciones en estado sólido de los materiales, y en especial de los metálicos.

Al final del curso el estudiante debe ser capaz de:

- \cdot Identificar e interpretar diagramas de fase de equilibrio y de inequilibrio
- \cdot Identificar, calcular y formular las cinéticas de transformación de fases
- · Identificar las principales transformaciones de fase

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	10,0	6.67
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	50,0	33.33

Dedicación total: 150 h

CONTENIDOS

TEMA I. Diagramas de equilibrio

Descripción:

Diagramas de equilibrio. Soluciones Sólidas. Fases Intermetálicas. Sistemas binarios y sistemas de multicomponentes y polifásicos.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

CEM7. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Dedicación: 22h Grupo grande/Teoría: 7h Grupo mediano/Prácticas: 4h Aprendizaje autónomo: 11h

TEMA II: Difusión

Descripción:

Difusión en el estado sólido. Coeficiente de difusión. Ecuaciones de difusión. Mecanismos de difusión. Difusión en aleaciones.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

CEM7. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Dedicación: 26h Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 16h

Fecha: 06/07/2025 **Página:** 2 / 4

TEMA III: Soldificación

Descripción:

Solidificación. Solidificación de metales. Nucleación y crecimiento de cristales a partir de metales puros y de aleaciones. Solidificación eutéctica. Solidificación de lingotes. Vidrios metálicos. Defectos de solidificación.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

CEM7. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Dedicación: 32h Grupo grande/Teoría: 6h Grupo mediano/Prácticas: 3h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 19h

TEMA IV: Transformaciones de fase en estado sólido

Descripción:

Transformaciones de fase en estado sólido. Nucleación y crecimiento de precipitados. Tipos de precipitados. Descomposición espinodal. Descomposición eutectoide y precipitación discontínua. Diagramas de inequilibrio (TTT y CCT). Transformación martensítica. Aleaciones con memoria de forma.

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

CEM7. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Dedicación: 41h

Grupo grande/Teoría: 8h Grupo mediano/Prácticas: 3h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 26h

TEMA V: Recuperación microestructural

Descripción:

Restauración. Recristalización y Crecimiento de grano (normal y anormal)

Competencias relacionadas:

CE9. Conocimiento de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales.

CEM7. Conocimientos y capacidades para la evaluación de la seguridad, durabilidad e integridad estructural de los materiales y componentes fabricados con ellos.

Dedicación: 29h

Grupo grande/Teoría: 5h Grupo mediano/Prácticas: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 18h

Fecha: 06/07/2025 Página: 3 / 4

SISTEMA DE CALIFICACIÓN

44% Exámen Final + 20% Exámen Parcial + 18 % Prácticas (Actividad 1) + 18% Problemas (actividad 2)

NO SE REALIZA RE-EVALUACIÓN.

BIBLIOGRAFÍA

Básica

- Reed-Hill, Robert E. Physical metallurgy principles. 4th ed. Stamford: Cengage Learning, 2010. ISBN 9780495438519.
- Smallman, R.E.; Bishop R. J. Modern physical metallurgy and materials engineering: science, process, applications. 6th ed. Oxford: Butterworth Heinemann, 1999. ISBN 0750645644.
- Verhoeven, John D. Fundamentals of physical metallurgy. New York: John Wiley and Sons, 1975. ISBN 0471906166.

RECURSOS

Otros recursos:

Material docente disponible en ATENEA.