

Guía docente 295756 - 295EM111 - Estructura y Propiedades de Aleaciones Metálicas

Última modificación: 26/06/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2014). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: JESICA CALVO MUÑOZ

Otros: Primer quadrimestre:

JESICA CALVO MUÑOZ - Grup: T1

CAPACIDADES PREVIAS

El estudiante deberá estar familiarizado con los conceptos y terminología de metalurgia física explicados en asignaturas de fundamentos de ciencia e ingeniería de materiales.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEAM-01. Diseñar y desarrollar productos, procesos y sistemas, así como la optimización de otros ya desarrollados, atendiendo a la selección de materiales para aplicaciones específicas

METODOLOGÍAS DOCENTES

La asignatura se impartirá en base a clases magistrales, estudio de casos y prácticas de laboratorio

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo de la asignatura es que el estudiante adquiera una visión amplia de las aleaciones metálicas de interés industrial. Se describirán aleaciones férreas y no férreas habituales, estableciendo relaciones entre el procesamiento, la microestructura, las propiedades y las aplicaciones. Asimismo, se proporcionarán modelos termodinámicos para la predicción de las transformaciones de fases en metales.

Fecha: 06/07/2025 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	108,0	72.00
Horas grupo pequeño	14,0	9.33
Horas grupo grande	28,0	18.67

Dedicación total: 150 h

CONTENIDOS

Introducción

Descripción:

Clasificación de los metales y sus principales aleaciones. Descripción de las principales características de las diferentes familias de metales

Objetivos específicos:

Clasificación de los metales y sus principales aleaciones. Descripción de las principales características de las diferentes familias de metales

Dedicación: 2h

Grupo grande/Teoría: 1h Aprendizaje autónomo: 1h

Aleaciones férreas

Descripción:

Diagrama de equilibrio Fe-C y transformaciones de fases de los aceros. Diagramas TTT i CCT. Tratamientos térmicos. Aceros generales para construcción. Aceros para chapas. Aceros para herramientas. Aceros inoxidables. Fundiciones de hierro.

Actividades vinculadas:

Práctica de caracterización metalográfica de piezas de acero.

Dedicación: 42h

Grupo grande/Teoría: 10h Grupo pequeño/Laboratorio: 5h Actividades dirigidas: 2h Aprendizaje autónomo: 25h

Cobre y sus aleaciones

Descripción:

Cobre puro. Latones, aleaciones y aplicaciones. Bronces, aleaciones y aplicaciones. Otras aleaciones de cobre.

Actividades vinculadas:

Práctica de laminación de Cu

Dedicación: 19h

Grupo grande/Teoría: 2h Grupo mediano/Prácticas: 3h Actividades dirigidas: 2h Aprendizaje autónomo: 12h

Fecha: 06/07/2025 **Página:** 2 / 4

Aleaciones ligeras

Descripción:

Aleaciones de aluminio para forja, tratables y no tratables. Aleaciones de aluminio para moldeo. Aleaciones de titanio alfa y sus aplicaciones. Aleaciones de titanio beta y sus aplicaciones. Principales aleaciones de magnesio para moldeo y para forja. Aplicaciones del magnesio

Actividades vinculadas:

Fundición y tratamientos térmicos de aleaciones de aluminio

Dedicación: 25h

Grupo mediano/Prácticas: 3h Grupo pequeño/Laboratorio: 2h Actividades dirigidas: 2h Aprendizaje autónomo: 18h

Transformaciones de fases en metales

Descripción:

- Termodinámica de los diagramas de fases
- Interfases, nucleación y crecimiento
- Tranformación martensítica y optimización microestructural de aceros de bajo carbono
- Intercaras y crecimiento de grano

Dedicación: 62h

Grupo grande/Teoría: 46h Grupo mediano/Prácticas: 10h Grupo pequeño/Laboratorio: 6h

SISTEMA DE CALIFICACIÓN

NF = 80% EX+20% NEC

- NF= Nota Final
- EX= Examen final o 50%P1+50%P2 (Si P1 y P2 > 5)

P1 y P2 son exámenes parciales 1 y 2

• NEC= Nota Evaluación Continuada (actividades, prácticas, presentaciones, ...)

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Los exámenes parciales serán presenciales y en horario de la asignatura, uno a mitad del cuatrimestre y otro al final.

De no aprobar los exámenes parciales, el estudiante deberá presentarse al examen final en el horario establecido para el examen final en el mes de enero.

Fecha: 06/07/2025 **Página:** 3 / 4

BIBLIOGRAFÍA

Básica:

- Avner, Sidney H. Introducción a la metalurgia física. 2ª ed. México ; Madrid [etc.]: McGraw Hill, cop. 1979. ISBN 9686046011.
- Bhadeshia, H. K. D. H; Honeycombe, R. W. K. Steels: microstructure and properties. 3rd ed. Amsterdam [etc.]: Elsevier, cop. 2006. ISBN 9780750680844.
- Callister, William D. Introducción a la ciencia e ingeniería de los materiales [en línea]. 2a ed. México, D.F.: Limusa Wiley, cop. 2009 [Consulta: 24/11/2021]. Disponible a:
- $\underline{https://search.ebscohost.com/login.aspx?direct=true\&scope=site\&db=nlebk\&db=nlabk\&AN=2616389}.~ISBN~9786075000251.$
- Polmear, I. J. Light alloys: from traditional alloys to nanocrystals. 4th ed. Amsterdam [etc.]: Elsevier, 2006. ISBN 0750663715.
- Porter, David A; Easterling, K. E; Sherif, Mohamed Y. Phase transformations in metals and alloys. 3rd ed. Boca Raton: CRC Press, cop. 2009. ISBN 1420062107.