

Guía docente 295759 - 295EM114 - Materiales Nanoestructurados

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: JOSE MARIA CABRERA MARRERO

Otros: Primer quadrimestre:

SEYED MAHMOOD FATEMI - Grup: T1 ELOY PINEDA SOLER - Grup: T1

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEAM-01. Diseñar y desarrollar productos, procesos y sistemas, así como la optimización de otros ya desarrollados, atendiendo a la selección de materiales para aplicaciones específicas

CEMCEAM-02. Aplicar métodos innovadores para el diseño, simulación, optimización y control de procesos de producción y transformación de materiales

CEMCEAM-03. Realizar estudios de caracterización y evaluación de materiales según sus aplicaciones

METODOLOGÍAS DOCENTES

La estructura de la asignatura es de 6 créditos. Se dan clases de la disciplina durante tres horas a la semana. Dentro de este horario se efectuarán prácticas de laboratorio, que dada la complejidad de los equipos e infraestructuras serán en general de carácter demostrativo. Una de las prácticas consistirá en la aplicación práctica de la técnica EBSD, que a lo largo del curso deberán aplicar a un caso concreto, y presentar por escrito al final. Asimismo, a lo largo del curso, los estudiantes, en grupos de dos o tres, deberán realizar un trabajo bibliográfico, que explicarán, pondrán en común y presentarán oralmente y por escrito al final del curso.

Las competencias genéricas que alcanzará el estudiante serán a) capacidad para entender a racionalizar el proceso de selección de materiales, b) capacidad para desarrollar técnicas de fabricación y conocimiento de técnicas de caracterización, c) capacidad de trabajar en equipo en el pre-proyecto y e) capacidad de comunicación escrita y oral técnica

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	28,0	18.67
Horas grupo pequeño	14,0	9.33
Horas aprendizaje autónomo	108,0	72.00

Fecha: 05/10/2025 **Página:** 1 / 3

Dedicación total: 150 h

CONTENIDOS

Introducción

Descripción:

Definiciones. Primera aproximación a los materiales nanoestructurados

Dedicación: 3h

Grupo grande/Teoría: 3h

Propiedades mecánicas

Descripción:

Propiedades mecánicas de resistencia y ductilidad y Mecanismos de deformación

Dedicación: 6h

Grupo grande/Teoría: 6h

Técnicas de caracterización microestructural

Descripción:

Caracterización microstructural aplicada a nanomateriales: EBSD, Difracción de rayos-X y otras

Dedicación: 6h 30m

Grupo grande/Teoría: 6h 30m

Vidrios metálicos

Descripción:

Introducción, tipos, propiedades y síntesis

Dedicación: 5h

Grupo grande/Teoría: 5h

Rutas de procesamiento: Bottom-up

Descripción:

Formación de clusters y nanopartículas desde vapor sobresaturado. Síntesis por rutas químicas.Materiales sol-gel nanoestructurados

Dedicación: 7h

Grupo grande/Teoría: 7h

Fecha: 05/10/2025 **Página:** 2 / 3

Rutas de procesamiento: Top-Down

Descripción:

Severa deformación plástica y formación de nanoestructuras per molienda mecánica

Dedicación: 8h

Grupo grande/Teoría: 8h

Seguimiento y defensa oral del trabajo monografico

Descripción:

Seguimiento y defensa oral del trabajo monográfico

Dedicación: 8h 30m

Grupo grande/Teoría: 8h 30m

Prácticas de Laboratorio

Descripción:

5 sesiones de Laboratori de EBSD, Vidrios Metálicos, ECAP, Conformación incremental, Molienda Mecánica

Dedicación: 10h Grupo grande/Teoría: 10h

SISTEMA DE CALIFICACIÓN

La nota final, Nfinal, se calculará de acuerdo a la siguiente ecuación:

Nfinal = 0.65Nef + 0.10Npract + 0.25Ndefensa

donde Nef es la nota del examen final, Npract es la nota de laboratorio y Ndefensa es la nota de la defensa oral de un trabajo científico

No hay examen de reavaluación

Fecha: 05/10/2025 **Página:** 3 / 3