

Guía docente 295760 - 295EM115 - Ingeniería Avanzada de Superficies

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Castellano

PROFESORADO

Profesorado responsable: GEMMA FARGAS RIBAS

Otros: Primer quadrimestre:

GEMMA FARGAS RIBAS - Grup: T1 JAUME PUJANTE AGUDO - Grup: T1 GISELLE RAMIREZ SANDOVAL - Grup: T1

CAPACIDADES PREVIAS

Conociminentos en ciencia de los materiales y química

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEAM-03. Realizar estudios de caracterización y evaluación de materiales según sus aplicaciones

METODOLOGÍAS DOCENTES

- -Clase expositiva participativa
- -Aprendizaje autónomo
- -Estudio de casos

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Conocer los objetivos, ventajas y aplicaciones de la ingeniería de superficies.

Adquirir un conocimiento de los métodos y técnicas de modificación superficial desde los convencionales hasta los más avanzados y correlacionarlo con la estructura y propiedades que se obtienen en superficie.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	28,0	18.67
Horas aprendizaje autónomo	108,0	72.00
Horas grupo pequeño	14,0	9.33

Fecha: 05/10/2025 **Página:** 1 / 4

Dedicación total: 150 h

CONTENIDOS

1. Conceptos básicos de la ingeniería de superficies

Descripción:

- Objetivos de la ingeniería de superficies
- Clasificación de las técnicas de modificación superficial
- Aplicaciones y limitaciones

Dedicación: 4h Actividades dirigidas: 2h Aprendizaje autónomo: 2h

2. Ingeniería de superficies mediante cambios en la microestructura de la superficie

Descripción:

Procesos mecánicos: Brunñido y granallado

Procesos térmicos: Endurecimiento por llama y inducción, endurecimiento por láser y haz de electrones, fusión de plasma y TIG

Dedicación: 18h Actividades dirigidas: 8h Aprendizaje autónomo: 10h

3. Ingeniería de superficies mediante cambios en la composición química de la superficie

Descripción:

- Procesos basados â□□â□□en difusión: carburación, nitruración, cianuración, boronización, vanadización
- Implantación iónica
- Aleación por láser

Dedicación: 24h

Actividades dirigidas: 12h Aprendizaje autónomo: 12h

4. Modificación superficial mediante recubrimientos

Descripción:

- Procesos basados â□□â□□en la difusión
- Métodos basados â□□â□□en la fusión
- Inmersión en métodos basados â \square \square â \square \square en la fusión en caliente
- Métodos basados â□□â□□en la electrólisis
- Métodos mecánicos

Dedicación: 30h

Actividades dirigidas: 12h Aprendizaje autónomo: 18h

Fecha: 05/10/2025 **Página:** 2 / 4

5. Aplicaciones de ingeniería de superficies multifuncionales

Descripción:

- Películas finas de óxido conductivo transparente
- Películas delgadas como barreras de permeación
- Películas delgadas fotocatalíticas-

Dedicación: 26h Actividades dirigidas: 6h Aprendizaje autónomo: 20h

6. Superficies y recobriments bioinspirados

Descripción:

Dedicación: 24h Actividades dirigidas: 4h Aprendizaje autónomo: 20h

7. Nanotecnolgía en superficies

Descripción:

Dedicación: 24h Actividades dirigidas: 4h Aprendizaje autónomo: 20h

SISTEMA DE CALIFICACIÓN

Primer parcial: 15% Segundo parcial: 25% Tercer parcial: 40%

Aprendizaje autónomo: 20%

En esta asignatura se programará un examen de re-evaluación. Podran acceder a la prueba de reevaluació aquellos estudiantes que cumplan los requisitos fijados por la EEBE en su Normativa de Evaluación y Permanencia (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-20 18-06-13.pdf)

Fecha: 05/10/2025 **Página:** 3 / 4

BIBLIOGRAFÍA

Básica:

- Dwivedi, Dheerendra Kumar. Surface Engineering: Enhancing Life of Tribological Components [en línea]. New Delhi: Springer India, 2018 [Consulta: 06/10/2020]. Disponible a: https://doi.org/10.1007/978-81-322-3779-2. ISBN 9788132237792.
- Tiwari, Ashutosh; Wang, Rui; Wei, Bingqing. Advanced surface engineering materials [en línea]. Beverly: Scrivener Publishing, cop. 2016 [Consulta: 06/10/2020]. Disponible a: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119314196. ISBN 9781119314158.
- Chattopadhyay, Ramnarayan. Advance thermally assisted surface engineering processes. Springer Science, 2004. ISBN 9781402077647.
- Burnell-Gray, J. S.; Datta, P. K. Surface engineering casebook: solutions to corrosion and wear-related failures. Abington (Cambridge): Woodhead Publishing, 1996. ISBN 1855732602.
- Martin, Peter M. Introduction to surface engineering and functionally engineered materials [en línea]. Salem, Mass.: Scrivener Pub., 2011 [Consulta: 06/10/2020]. Disponible a: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118171899. ISBN 9781118171899.
- Adamson, Arthur W.. Physical chemistry of surfaces. 6th ed. New York [etc.]: John Wiley & Sons, 1997. ISBN 9780471148739.
- J. R. Davis. Surface engineering: for corrosion and wear resistance. ASM International, 2001. ISBN 0871707004.

Fecha: 05/10/2025 **Página:** 4 / 4