

Guía docente 295762 - 295EM122 - Materiales Biomédicos

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2014). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Castellano

PROFESORADO

Profesorado responsable:

Otros:

CAPACIDADES PREVIAS

Se recomienda conocimientos de biomateriales

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEAM-03. Realizar estudios de caracterización y evaluación de materiales según sus aplicaciones

 ${\sf CEMCEAM-05.}\ Interpretar\ y\ aplicar\ normativas\ y\ especificaciones\ relativas\ a\ los\ materiales\ y\ sus\ aplicaciones$

Transversales:

05 TEQ. TRABAJO EN EQUIPO: Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro más, o realizando tareas de dirección con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

METODOLOGÍAS DOCENTES

La asignatura comprende clases en formato teórico y seminarios. Se realizarán actividades dirigidas presenciales para trabajar la comunicación oral y escrita y el trabajo en equipo a través de lecturas. También se realizarán prácticas de laboratorio y se fomentará el aprendizaje autónomo y el uso solvente de recursos de información mediante actividades dirigidas no presenciales.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

El objetivo de la asignatura es que el estudiante adquiera conocimiento de las aplicaciones de biomateriales en medicina y, por tanto, sea capaz de relacionar propiedades y respuesta biológica de los biomateriales y aplicar criterios de selección más adecuados para cada aplicación. Además, se describen las diferentes técnicas de caracterización biológica in vitro e in vivo de biomateriales, así como la interpretación de los resultados obtenidos mediante las diferentes técnicas. El objetivos específicos son:

- Revisar los diferentes tipos de biomateriales, sus características y biocompatibilidad.
- Conocer los principios básicos de la caracterización biológica in vitro e in vivo para evaluar la biocompatibilidad de los biomateriales.
- Conocer las principales aplicaciones de biomateriales en medicina.

Fecha: 05/10/2025 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	108,0	72.00
Horas grupo grande	28,0	18.67
Horas grupo pequeño	14,0	9.33

Dedicación total: 150 h

CONTENIDOS

Evaluación de la interacción célula / biomaterial

Descripción:

- Interacción célula / biomaterial, biocompatibilidad
- Tipos de cultivos celulares: cultivo primario, cultivo secundario, cocultivos
- Respuestas celulares básicas: adhesión, proliferación, diferenciación y apoptosis
- Evaluación de la citotoxicidad de un biomaterial: ensayos de medida de la actividad metabólica (LDH, MTT) y ensayos basados en el principio de exclusión celular (inmunofluorescencia, ELISA)
- Evaluación de la interacción bacterias / biomaterial
- Evaluación de la interacción sangre / biomaterial

Dedicación: 35h

Grupo mediano/Prácticas: 6h Grupo pequeño/Laboratorio: 3h Actividades dirigidas: 2h Aprendizaje autónomo: 24h

Materiales biomédicos para aplicaciones cardiovasculares

Descripción:

- Enfermedades cardiovasculares; endotelización y trombogenicitat
- Stents cardiovasculares
- Válvulas cardíacas
- Injertos cardiovasculares

Dedicación: 29h

Grupo mediano/Prácticas: 5h Grupo pequeño/Laboratorio: 4h Actividades dirigidas: 1h Aprendizaje autónomo: 19h

Materiales biomédicos para aplicaciones dentales y ortopédicas

Descripción:

- Biomateriales para sustitución ósea: metales y cerámicas inertes
- Implantes dentales. Prótesis de cadera y de rodilla. Materiales de osteoisíntesis: placas y tornillos. disco intervertebrales
- Biomateriales para regeneración ósea: biocerámicas y biovidres
- Biomateriales para la reparación y regeneración condral. Ingeniería de tejidos aplicados a la cirugía ortopédica y maxilofacial

Dedicación: 34h

Grupo mediano/Prácticas: 6h Grupo pequeño/Laboratorio: 3h Actividades dirigidas: 1h Aprendizaje autónomo: 24h

Materiales biomédicos para aplicaciones oftalmológicas, piel, adhesivos y suturas

Descripción:

- Biomateriales para aplicaciones oftalmológicas: Anatomía del ojo; lentes de contacto blandas y duras; lentes intraoculares; implantes de córnea
- Biomateriales para aplicaciones para sustitución de piel: Estructura de la dermis; implantes permanentes y reabsorvibles; ingeniería de tejidos aplicada a la regeneración de piel
- Adhesivos, sellantes y suturas: Mecanismos de adhesión; composición y características de los materiales adhesivos; adhesivos para tejidos blandos; adhesivos para tejidos duros; suturas naturales y sintéticas

Dedicación: 27h

Grupo mediano/Prácticas: 6h Grupo pequeño/Laboratorio: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 18h

Biomedical materials for the controlled release of drugs

Descripción:

- Control de la liberación de un fármaco, entre la efectividad y la toxicidad
- Control de la liberación por la difusión
- Sistemas de control de la liberación por penetración de agua en el dispositivo
- Dispositivos controlados químicamente

Dedicación: 25h

Grupo mediano/Prácticas: 5h Grupo pequeño/Laboratorio: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 17h

SISTEMA DE CALIFICACIÓN

Nfinal=0,40*Nex final+0,40*Nex parcial+0,10*Laboratorio+0,10*Trabajo

En caso de reevaluación, Nfinal=0,80*Nex reevaluación+0,10*Laboratorio+0,10*Trabajo

BIBLIOGRAFÍA

Básica:

- Ratner, Buddy D. [et al.] (eds.). Biomaterials science : an introduction to materials in medicine. 3rd ed. Amsterdam: Elsevier/Academic Press, 2013. ISBN 9780123746269.

Complementaria:

- Khurana, Jasvir S.; McCarthy, Edward F.; Zhang, Paul J. Essentials in bone and soft-tissue pathology [en línea]. New York: Springer, [2010] [Consulta: 19/05/2020]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=993468. ISBN 9780387898452.

- Agrawal, C. Mauli [et al.]. Introduction to biomaterials : basic theory with engineering applications. Cambridge: Cambridge University Press, 2014. ISBN 9780521116909.

Fecha: 05/10/2025 **Página:** 3 / 4

RECURSOS

Material audiovisual:

- Presentacions en PPT. Presentaciones en PPT

Fecha: 05/10/2025 **Página:** 4 / 4