

Course guide 295918 - IR - Intelligent Robotics

Last modified: 02/10/2025

Unit in charge: Barcelona East School of Engineering

Teaching unit: 707 - ESAII - Department of Automatic Control.

Degree: BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Optional subject).

BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Optional subject). BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Optional subject). BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Optional subject).

BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus

2009). (Optional subject).

BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Optional subject). BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2025 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: PEDRO PONSA ASENSIO

Others: Primer quadrimestre:

PEDRO PONSA ASENSIO - Grup: T11 SEBASTIAN TORNIL SIN - Grup: T11

ELENA VILLALBA AGUILERA - Grup: T11, Grup: T12

PRIOR SKILLS

- industrial robotics
- Electronic instrumentation (sensors, electric actuators, communications networks)
- Programming (Python, MATLAB, C)

REQUIREMENTS

It is recommended to have passed the subjects Industrial Robotics and Computer Vision (RIVC) and Automatic Regulation (REGA)

TEACHING METHODOLOGY

- written exam
- exercises
- case study
- project-based learning
- oral presentation
- team work
- laboratory practices
- simulation scenario

LEARNING OBJECTIVES OF THE SUBJECT

- Introduce students to the classification of robots (industrial, collaborative, intelligent).
- To know and apply the basic methods of artificial intelligence to robotics.
- To design, develop and program autonomous robotic systems.

Date: 04/10/2025 **Page:** 1 / 4

STUDY LOAD

Туре	Hours	Percentage
Hours large group	30,0	50.00
Hours small group	30,0	50.00

Total learning time: 60 h

CONTENTS

1. Introduction

Description:

1.1. Context. Intelligent robotics definition

1.2. Robotic systems architecture

1.3. Brief history

1.4. Field application: industry, space

Specific objectives:

Introduce the context of robots with cognitive capabilities and their applications.

Related activities:

Written exam Exercises

Full-or-part-time: 6h Theory classes: 2h Guided activities: 2h Self study: 2h

2. AI methods applied to robotics

Description:

- 2.1. Machine learning
- 2.2. Deep Learning
- 2.3. Reinforcement learning
- 2.4. Systems enginnering approach for robot tasks

Specific objectives:

Know the relevant AI methods to apply to robotics.

Related activities:

Written exam

Exercises

Full-or-part-time: 24h Theory classes: 10h Guided activities: 4h Self study: 10h

Date: 04/10/2025 **Page:** 2 / 4

3. Interacting with robots

Description:

- 3.1. Interaction model (physical, cognitive) for human-robot systems.
- 3.2. Design of cognitive assistants for human-robot tasks in an industrial environment.
- 3.3. Interfaces (commands by voice or gesture, human tracking by vision techniques, force measurement)
- 3.4. Industrial Case study

Specific objectives:

Assess the interaction between a human and an artificial agent.

Related activities:

Written exam Exercises

Full-or-part-time: 16h Theory classes: 6h Guided activities: 4h Self study: 6h

4. Autonomous mobile robots

Description:

- 4.1. Introduction
- 4.2. Wheels-based robots
- 4.3. Perception
- 4.4. Localization
- 4.5. Planning
- 4.6. Autonomous robot project

Specific objectives:

To know the diversity of mobile robots in the industry and to design new prototypes.

Related activities:

Project

Full-or-part-time: 44h Theory classes: 12h Guided activities: 20h Self study: 12h

Date: 04/10/2025 **Page:** 3 / 4

5. Practice activities

Description:

- 5.1. Operation of RPLIDAR sensor
- 5.2. Robotino robot functionality
- 5.3. Robotino View programming
- 5.4. Robotino Communication
- 5.5. Functionalities of ROS for autonomous navigation

Specific objectives:

Develop advanced programming and system integration skills

Related activities: Laboratory Practices

Full-or-part-time: 60h Laboratory classes: 30h Self study: 30h

GRADING SYSTEM

Project (PBL) 20% Practices report (P) 30% Written exam (E) 30% Oral presentation (OP) 20%

Final mark: 0.2*PBL + 0.3*P + 0.3*E + 0.2*OP (continuous evaluation)

EXAMINATION RULES.

- 1. There will be evaluation of directed activities (face-to-face or non-face-to-face) corresponding to the completion of proposed work (type AP) and the completion of Practices report (type P). These may be individual or in groups, according to the criteria of each professor.
- 2. There will be a partial exam (PE) lasting a maximum of 2 hours, which will consist of questions related to theoretical knowledge of the subject matter of the course and aimed at assessing the learning objectives of the student.

There will be no re-evaluation exam in this subject.

BIBLIOGRAPHY

Basic:

- Siegwart, Roland; Nourbakhsh, Illah Reza; Scaramuzza, Davide. Introduction to autonomous mobile robots [on line]. 2nd ed. Cambridge: MIT Press, cop. 2011 [Consultation: 14/07/2025]. Available on: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=3339 191. ISBN 9780262015356.
- Govers, Francis X. Artificial intelligence for robotics: build intelligent robots using ROS 2, Python, OpenCV, and AI/ML techniques for real-world tasks. Second edition. Birmingham, England: Packt Publishing, 2024. ISBN 9781805129592.

Complementary:

- Angulo Bahón, Cecilio; Ponsa Asensio, Pere; Xhafa, Fatos. Cognitive assistant supported human-robot collaboration. London: Elsevier, 2024. ISBN 9780443221354.
- Cognitive robotics. Cambridge: The MIT Press, 2022. ISBN 9780262046831.

Date: 04/10/2025 **Page:** 4 / 4