300247 - SEA - Sustainability of Aerospace Engineering

Coordinating unit: 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering
Teaching unit: 707 - ESATI - Department of Automatic Control
300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering

Academic year: 2017

Degree: BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING/BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING/BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING - NETWORK ENGINEERING (AGrupació de Simultaneïtat) (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AEROSPACE SYSTEMS ENGINEERING/BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)

ECTS credits: 3

Teaching languages: English

Teaching staff

Coordinator: Definit a la infoweb de l'assignatura.
Others: Definit a la infoweb de l'assignatura.

Degree competences to which the subject contributes

Specific:
CE 17 AERO. CE 22 AERON. Conocimiento adecuado y aplicado a la Ingeniería de: Los fundamentos de sostenibilidad, mantenibilidad y operatividad de los sistemas de navegación aérea. (CIN/308/2009, BOE 18.2.2009)

Generical:
CG7. (ENG) CG7 - Capacidad de analizar y valorar el impacto social y medioambiental de las soluciones técnicas.

Transversal:
03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
02 SCS N1. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 1. Analyzing the world's situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.
02 SCS N2. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.
05 TEQ N1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology

The course combines the following teaching (learning) methodologies:
- Autonomous learning, because students will work many self-learning materials at home.
- Cooperative learning, because students will solve many tasks in small groups.
We will make an experiment on "flipped classroom" methodology but it will depend on the group sizes

Learning objectives of the subject

Knowing the concept and conditions of unsustainability, and knowing how to apply techniques and procedures to
approach sustainability

Knowing data about the current state of the world from the economic, environmental and social points of view. Having a historical idea about how we have arrived to the present situation

Awareness of complexity and the need for the systemic approach

Awareness of the engineering responsibility and especially of the aerospace engineering responsibility

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>31h 30m</th>
<th>42.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>1h 30m</td>
<td>2.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>42h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
300247 - SEA - Sustainability of Aerospace Engineering

Content

<table>
<thead>
<tr>
<th>CHAPTER 1 - STATE OF THE WORLD AND CAUSES OF UNSUSTAINABILITY</th>
<th>Learning time: 10h 14m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h 30m</td>
</tr>
<tr>
<td>1 Some ecological data</td>
<td>Self study: 5h 44m</td>
</tr>
<tr>
<td>2 Some economic data</td>
<td></td>
</tr>
<tr>
<td>3 Some social data</td>
<td></td>
</tr>
<tr>
<td>4 Historical causes of unsustainability</td>
<td></td>
</tr>
<tr>
<td>5 Technology as a problem</td>
<td></td>
</tr>
<tr>
<td>6 Science, technology and politics as a solution</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Theoretical and more practical questionnaires</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Knowing data about the current state of the world from the</td>
<td></td>
</tr>
<tr>
<td>economic, environmental and social points of view</td>
<td></td>
</tr>
<tr>
<td>Having a historical idea about how we have arrived to the</td>
<td></td>
</tr>
<tr>
<td>present situation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2 - SUSTAINABLE DEVELOPMENT</th>
<th>Learning time: 10h 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h 30m</td>
</tr>
<tr>
<td>1 Some basic concepts</td>
<td>Self study: 5h 42m</td>
</tr>
<tr>
<td>2 History of the idea</td>
<td></td>
</tr>
<tr>
<td>3 Some counterexamples</td>
<td></td>
</tr>
<tr>
<td>4 Indicators and indexes</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Theoretical questionnaires</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Knowing the concept, evolution and</td>
<td></td>
</tr>
<tr>
<td>conditions of unsustainability and</td>
<td></td>
</tr>
<tr>
<td>also the tools to try measuring our</td>
<td></td>
</tr>
<tr>
<td>distance from the ideal</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3 - SYSTEMICS AND COMPLEXITY

Learning time: 11h 22m
Theory classes: 4h 30m
Guided activities: 0h 30m
Self study: 6h 22m

Description:
1. Reductionism, systemic approach and complex systems
2. Linear and nonlinear behavior
3. Deterministic chaos
4. Chaotic life
5. Networks

Related activities:
Theoretical and practical questionnaires

Specific objectives:
Awareness of complexity and the need for the systemic approach

CHAPTER 4 - GLOBALIZACION

Learning time: 10h 14m
Theory classes: 4h 30m
Self study: 5h 44m

Description:
1. Concept and reality
2. Who is who in globalization?
3. Human rights
4. The welfare state
5. Globalization of safety and justice
6. Globalization of health and education

Related activities:
Theoretical questionnaires

Specific objectives:
Knowing the current globalization process and its main agents
CHAPTER 5 - HUMAN VALUES

Learning time: 11h 22m
Theory classes: 4h 30m
Guided activities: 0h 30m
Self study: 6h 22m

Description:
0 Does engineering need human values?
1 Science and engineering
2 Reasons not to harm the others
3 Game of Cooperation and Desertion
4 Human values in engineering

Related activities:
Theoretical and practical questionnaires

Specific objectives:
Awareness of the need for human values and their analysis from the engineering point of view

CHAPTER 6 - TOOLS FOR SUSTAINABILITY

Learning time: 10h 14m
Theory classes: 4h 30m
Self study: 5h 44m

Description:
1 Approach: Life Cycle Analysis
1.1 a 1.5 different stages
2 Environmental norms and directives
2.1 Environmental Impact Assessment
3 Corporate social responsibility and sustainability norms
3.1 Global Reporting Initiative
3.1 ISO 26000
4 Technological tools for sustainability

Related activities:
Theoretical and more practical questionnaires

Specific objectives:
Knowing how to apply techniques and procedures to approach sustainability
CHAPTER 7 - IMPACT OF AEROSPACE ENGINEERING

Description:
1. Economic impact of aerospace engineering
2. Environmental impact of aerospace engineering
3. Social impact of aerospace engineering
4. Specific administrative tools
5. Involved organizations
6. Developing technologies

Related activities:
Theoretical and more practical questionnaires

Specific objectives:
Awareness of the engineering responsibility and especially of the aerospace engineering responsibility

Learning time: 11h 22m
- Theory classes: 4h 30m
- Guided activities: 0h 30m
- Self study: 6h 22m

Bibliography

Basic:

Complementary: