

Guía docente 330518 - MF - Mecánica de Fluidos

Última modificación: 28/04/2025

Unidad responsable: Escuela Politécnica Superior de Ingeniería de Manresa

Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC.

Titulación: GRADO EN INGENIERÍA DE AUTOMOCIÓN (Plan 2017). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 4.5 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Pérez Ràfols, Francisco

Otros: Pérez Ràfols, Francisco

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

Genéricas:

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

Transversales:

- 1. COMUNICACIÓN EFICAZ ORAL Y ESCRITA Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.
- 2. TRABAJO EN EQUIPO Nivel 2: Contribuir a consolidar el equipo planificando objetivos, trabajando con eficacia y favoreciendo la comunicación, la distribución de tareas y la cohesión.
- 3. APRENDIZAJE AUTÓNOMO Nivel 2: Llevar a cabo las tareas encomendadas a partir de las orientaciones básicas dadas por el profesorado, decidiendo el tiempo que se necesita emplear para cada tarea, incluyendo aportaciones personales y ampliando las fuentes de información indicadas.
- 4. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.
- 5. SOSTENIBILIDAD Y COMPROMISO SOCIAL Nivel 2: Aplicar criterios de sostenibilidad y los códigos deontológicos de la profesión en el diseño y la evaluación de las soluciones tecnológicas.

Básicas:

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

METODOLOGÍAS DOCENTES

MD2 Resolución de problemas y estudio de casos (RP)

MD3 Trabajos prácticos en laboratorio o taller (TP)

MD4 Trabajo teórico-práctico dirigido (TD)

MD5 Proyecto, actividad o trabajo de alcance reducido (PR)

MD7 Actividades de Evaluación (EV)

Fecha: 01/06/2025 **Página:** 1 / 12

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

La asignatura pretende proporcionar conocimientos específicos sobre la mecánica de fluidos.

Entre los diferentes objetivos de aprendizaje figuran:

- Conocer las principales propiedades cinemáticas, termodinámicas y físicas de los fluidos.
- Conocer y tener capacidad de analizar los fluidos desde el punto de vista del volumen de control las ecuaciones conservativas de la masa, cantidad de movimiento y energía.
- Conocer y tener capacidad de analizar los fluidos desde el punto de vista diferencial las ecuaciones conservativas de la masa, cantidad de movimiento y energía.
- Conocer los diferentes tipos de flujos de fluidos y su caracterización.
- Conocer las ecuaciones de Navier-Stokes para un fluido incompresible viscoso.
- Conocer y tener capacidad de analizar las técnicas experimentales aplicadas a los fluidos.
- Conocer los métodos matemáticos relacionados con la simulación de los flujos de fluidos (internos y externos).
- Conocer y tener capacidad de analizar las técnicas principales de analisis dimensional

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	30,0	26.67
Horas grupo grande	15,0	13.33
Horas aprendizaje autónomo	67,5	60.00

Dedicación total: 112.5 h

CONTENIDOS

Título del contenido 1: Introducción a los fluidos. Propiedades.

Descripción:

Introducción a los fluidos. Caracterización. Propiedades.

Objetivos específicos:

Conocer las características mecánicas de los fluidos.

Conocer el tratamiento del medio continuo.

Conocer las propiedades cinemáticas, termodinámicas y físicas de los fluidos.

Actividades vinculadas:

Problemas de clase (Actividad 1) Test de teoría (Actividad 2)

Evaluación individual 1 (Actividad 4)

Dedicación: 15h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 9h

Título del contenido 2: Estatica de fluidos

Descripción:

Introducción a la estática de fluidos. Presión hidrostática. Fuerzas de presión

Objetivos específicos:

Conocer el concepto de presión hidrostática

Conocer, comprender i analizar las fuerzas que un fluido estático realiza sobre una superficie, así como la flotabilidad de los cuerpos

Conocer, comprender i analizar los movimientos de un fluido como solido rígido

Actividades vinculadas:

Problemas de clase (Actividad 1) Test de teoría (Actividad 2) Entrega individual de problemas (Actividad 3)

Evaluación individual 1 (Actividad 4)

Dedicación: 15h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 9h

Título del contenido 3: Relaciones integrales para volúmenes de control

Descripción:

Leyes básicas de la mecánica de fluidos. Teorema de Reynolds. Leyes conservativas desde el punto de vista euleriano.

Objetivos específicos:

Conocer, comprender y analizar fluidos desde el punto de vista del volumen de control, aplicando las leyes básicas de la mecánica de fluidos.

Actividades vinculadas:

Problemas de clase (Actividad 1)

Test de teoría (Actividad 2)

Entrega individual de problemas (Actividad 3)

Evaluación individual 1 (Actividad 4) Evaluación individual 2 (Actividad 6)

Dedicación: 30h Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 8h Aprendizaje autónomo: 18h

Fecha: 01/06/2025 **Página:** 3 / 12

Título del contenido 4: Relaciones diferenciales para una partícula fluida

Descripción:

Leyes conservativas desde el punto de vista lagrangiano.

Objetivos específicos:

Conocer, comprender y analizar fluidos desde el punto de vista diferencial, aplicando las leyes básicas de la mecánica de fluidos. Conocer y comprender las ecuaciones de Navier-Stokes.

Conocer los métodos básicos para analizar numéricamente problemas relacionados con la mecánica de fluidos

Actividades vinculadas:

Test de teoría (Actividad 2) Trabajo en grupo (Actividad 5) Evaluación individual 2 (Actividad 6)

Dedicación: 15h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 9h

Título del contenido 5: Análisis dimensional y semejanza.

Descripción:

Análisis dimensional y semejanza.

Objetivos específicos:

Conocer y comprender el concepto de grupo adimensional y como encontrar-los

Conocer y comprender el concepto de semejanza y comprender su uso en el estudio experimental de modelos

Actividades vinculadas:

Problemas de clase (Actividad 1)

Test de teoría (Actividad 2)

Entrega individual de problemas (Actividad 3)

Evaluación individual 2 (Actividad 6)

Dedicación: 15h Grupo grande/Teoría: 2h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 9h

Fecha: 01/06/2025 Página: 4 / 12

Título del contenido 6: Flujo interno. Flujo unidireccional

Descripción:

Flujo interno. Pérdida de energía por rozamiento.

Aplicaciones de flujo laminar unidireccional: flujo laminar, capa límite, lubricación.

Objetivos específicos:

Comprender los flujos unidireccionales: flujo laminar y turbulento entre dos superficies y en tuberías.

Conocer la capa límite de los fluidos.

Conocer y comprender la teoría básica de la lubricación hidrodinámica.

Actividades vinculadas:

Problemas de clase (Actividad 1) Test de teoría (Actividad 2) Entrega individual de problemas (Actividad 3) Evaluación individual 2 (Actividad 6)

Dedicación: 22h 30m Grupo grande/Teoría: 3h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 13h 30m

Fecha: 01/06/2025 **Página:** 5 / 12

ACTIVIDADES

Actividad 1: Problemas de clase

Descripción:

Realizar y entregar un problema en cada clase de grupo pequeño

Objetivos específicos:

Trabajo en equipo.

Uso solvente de los recursos de información.

Tercera lengua.

Material:

En el campus virtual "ATENEA"

Entregable:

5 % de la nota

Competencias relacionadas:

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

05 TEQ N2. TRABAJO EN EQUIPO - Nivel 2: Contribuir a consolidar el equipo planificando objetivos, trabajando con eficacia y favoreciendo la comunicación, la distribución de tareas y la cohesión.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Dedicación: 6h

Grupo pequeño/Laboratorio: 6h

Actividad 2: Test de teoría en clase

Descripción:

Se deben visonar las lecciones en proporcionadas en video y estudiar el material teorico antes de clase. Al inicio de cada clase de grup gran, se realizará un test para evaluar el grado de conocimiento de la teoría básica.

Objetivos específicos:

Desarrollo de técnicas y estrategias de razonamiento para el análisis

Uso solvente de los recursos de información.

Tercera lengua.

Material:

Lecciones en video y material teórico en el campus virtual "ATENEA" y bibliografia

Entregable:

5 % de la nota

Competencias relacionadas:

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Dedicación: 6h

Aprendizaje autónomo: 6h

Actividad 3: Entrega individual de problemas

Descripción:

Realizar y entregar, de forma individual, seis problemas

Objetivos específicos:

Desarrollo de técnicas y estrategias de razonamiento para el análisis.

Comunicación escrita y oral.

Uso solvente de los recursos de información.

Tercera lengua.

Material:

En el campus virtual "ATENEA"

Entregable:

10 % de la nota

Competencias relacionadas:

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

07 AAT N2. APRENDIZAJE AUTÓNOMO - Nivel 2: Llevar a cabo las tareas encomendadas a partir de las orientaciones básicas dadas por el profesorado, decidiendo el tiempo que se necesita emplear para cada tarea, incluyendo aportaciones personales y ampliando las fuentes de información indicadas.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

Dedicación: 6h

Aprendizaje autónomo: 6h

Fecha: 01/06/2025 **Página:** 8 / 12

Actividad 4: Evaluación individual 1

Descripción:

Prueba individual escrita, realizada en clase.

Objetivos específicos:

Desarrollo de técnicas y estrategias de razonamiento para el análisis.

Comunicación escrita y oral.

Tercera lengua.

Material:

Calculadora, pape, bolígrafo

Entregable:

30 % de la nota

Competencias relacionadas:

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

07 AAT N2. APRENDIZAJE AUTÓNOMO - Nivel 2: Llevar a cabo las tareas encomendadas a partir de las orientaciones básicas dadas por el profesorado, decidiendo el tiempo que se necesita emplear para cada tarea, incluyendo aportaciones personales y ampliando las fuentes de información indicadas.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

Dedicación: 2h

Grupo grande/Teoría: 2h

Fecha: 01/06/2025 **Página:** 9 / 12

Actividad 6: Trabajo en grupo

Descripción:

Realizar, en grupos, un modelo de flujo interno y realizar su evaluación mediante técnicas de simulación (usando el programa SimScale). Los resultados se presentarán mediante una memoria escrita y una exposición oral.

Objetivos específicos:

Desarrollo de técnicas y estrategias de razonamiento para el análisis.

Comunicación escrita y oral.

Trabajo en equipo.

Uso solvente de los recursos de información.

Tercera lengua.

Material:

En el campus virtual "ATENEA"

Entregable:

10 % de la nota

Competencias relacionadas:

CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

05 TEQ N2. TRABAJO EN EQUIPO - Nivel 2: Contribuir a consolidar el equipo planificando objetivos, trabajando con eficacia y favoreciendo la comunicación, la distribución de tareas y la cohesión.

02 SCS N2. SOSTENIBILIDAD Y COMPROMISO SOCIAL - Nivel 2: Aplicar criterios de sostenibilidad y los códigos deontológicos de la profesión en el diseño y la evaluación de las soluciones tecnológicas.

07 AAT N2. APRENDIZAJE AUTÓNOMO - Nivel 2: Llevar a cabo las tareas encomendadas a partir de las orientaciones básicas dadas por el profesorado, decidiendo el tiempo que se necesita emplear para cada tarea, incluyendo aportaciones personales y ampliando las fuentes de información indicadas.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Dedicación: 16h

Aprendizaje autónomo: 12h Grupo pequeño/Laboratorio: 4h

Fecha: 01/06/2025 **Página:** 10 / 12

Actividad 6: Evaluación individual 2

Descripción:

Prueba individual escrita, realizada en clase.

Objetivos específicos:

Desarrollo de técnicas y estrategias de razonamiento para el análisis.

Comunicación escrita y oral.

Tercera lengua.

Material:

Calculadora, papel, bolígrafo

Entregable:

35 % de la nota

Competencias relacionadas:

CE7. Conocimientos de los principios básicos de la mecánica de fluidos y su aplicación a la resolución de problemas en el campo de la ingeniería. Capacidad de diseñar e interpretar sistemas fluidodinámicos.

CG4. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería de la automoción.

CG3. Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías y les dote de versatilidad para adaptarse a nuevas situaciones.

04 COE N2. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 2: Utilizar estrategias para preparar y llevar a cabo las presentaciones orales y redactar textos y documentos con un contenido coherente, una estructura y un estilo adecuados y un buen nivel ortográfico y gramatical.

07 AAT N2. APRENDIZAJE AUTÓNOMO - Nivel 2: Llevar a cabo las tareas encomendadas a partir de las orientaciones básicas dadas por el profesorado, decidiendo el tiempo que se necesita emplear para cada tarea, incluyendo aportaciones personales y ampliando las fuentes de información indicadas.

03 TLG. TERCERA LENGUA: Conocer una tercera lengua, que será preferentemente inglés, con un nivel adecuado de forma oral y por escrito y en consonancia con las necesidades que tendrán las tituladas y los titulados en cada enseñanza.

Dedicación: 2h

Grupo grande/Teoría: 2h

SISTEMA DE CALIFICACIÓN

Actividad 1: 5 % nota Actividad 2: 5 % nota Actividad 3: 10 % nota Actividad 4: 35 % nota Actividad 5: 10 % nota Actividad 6: 35 % nota

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Es indispensable haber asistido a un mínimo de cuatro actividades para aprobar la asignatura. Respecto a las actividades 1, 2 i 3, es necesario haber realizado un mínimo del 60 % de las entregas para considerarlas realizadas.

Fecha: 01/06/2025 **Página:** 11 / 12

BIBLIOGRAFÍA

Básica:

- Currie, Iain G. Fundamental mechanics of fluids. 4th ed. Boca Raton: CRC Press, 2013. ISBN 9781439874608.
- White, Frank M. Mecánica de fluidos [en línea]. 6ª ed. Madrid: McGraw-Hill, 2008 [Consulta: 03/06/2022]. Disponible a: https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=4144. ISBN 9788448166038.
- Çengel, Yunus A.; Cimbala, John M. Mecánica de fluidos: fundamentos y aplicaciones [en línea]. Cuarta edición. México, DF: McGraw-Hill, 2018 [Consulta: 08/06/2022]. Disponible a: https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=8102. ISBN 9781456260941.

Complementaria:

- Fernández Oro, Jesús Manuel. Técnicas numéricas en ingeniería de fluidos: introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos [en línea]. Barcelona: Reverté, 2012 [Consulta: 01/12/2021]. Disponible a: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?docID=3429852. ISBN 9788429126020.

RECURSOS

Otros recursos:

Apuntes, presentaciones y problemas en el campus digital "ATENEA"

Fecha: 01/06/2025 **Página:** 12 / 12