

Guía docente 330605 - MNAEM - Métodos Numéricos Aplicados a la Ingeniería Minera

Última modificación: 19/05/2025

Unidad responsable: Escuela Politécnica Superior de Ingeniería de Manresa

Unidad que imparte: 749 - MAT - Departamento de Matemáticas.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE MINAS (Plan 2013). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 5.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: Cors Iglesias, Josep M.

Otros:

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. Capacidad para abordar y resolver problemas matemáticos avanzados de ingeniería, desde el planteamiento del problema hasta el desarrollo de la formulación y su implementación en un programa de ordenador. En particular, capacidad para formular, programar y aplicar modelos analíticos y numéricos avanzados de cálculo, proyecto, planificación y gestión, así como capacidad para la interpretación de los resultados obtenidos, en el contexto de la Ingeniería de Minas.

METODOLOGÍAS DOCENTES

En las sesiones de exposición de contenidos el profesor introducirá las bases teóricas de la materia, conceptos, métodos y resultados ilustrándolo s con ejemplos convenientes para facilitar su comprensión.

Los estudiantes, de forma autónoma deberán estudiar para asimilar los conceptos, resolver los ejercicios propuestos ya sea a mano o con la ayuda del ordenador.

Sesiones presenciales en grupo pequeño donde el profesor resolverá las dudas que tengan los estudiantes después de su estudio autónomo, y / o se harán prácticas.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Al terminar la asignatura MÉTODOS NUMÉRICOS APLICADOS A LA INGENIERÍA MINERA, el estudiante debe ser capaz de:

- \cdot Utilizar correctamente los métodos numéricos estudiados.
- · Aumentar su capacidad de abstracción.
- \cdot Familiarizarse con el razonamiento deductivo.
- · Organizar y aplicar los conocimientos teóricos necesarios a la resolución de problemas de ingeniería.
- · Interpretar los resultados obtenidos con la ayuda de las herramientas informáticas.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Тіро	Horas	Porcentaje
Horas grupo mediano	45,0	36.00
Horas aprendizaje autónomo	80,0	64.00

Dedicación total: 125 h

Fecha: 10/10/2025 **Página:** 1 / 5

CONTENIDOS

Título del contenido 1: Preliminares de métodos numéricos

Descripción:

- 1. Ecuaciones y sistemas no lineales.
- 2. Interpolación y aproximación de funciones.
- 3. Integración numérica.

Actividades vinculadas:

Actividad A1.

Dedicación: 19h Grupo grande/Teoría: 3h Grupo pequeño/Laboratorio: 6h Aprendizaje autónomo: 10h

Título del contenido 2: Modelización con EDO s

Descripción:

- 1. Problemas de valor inicial en ingeniería.
- 2. Métodos numéricos de paso simple (Runge-Kutta) para problemas de valor inicial.
- 3. Métodos numéricos de multipaso (Adams-BASHFORD) para problemas de valor inicial.
- 4. Problemas de contorno en ingeniería.
- 5. El método del tiro por problemas de contorno.

Actividades vinculadas:

Prueba E1 y Actividad A2.

Dedicación: 53h

Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 12h Aprendizaje autónomo: 35h

Título del contenido 3: Modelización con EDP s

Descripción:

- 1. Modelos en ingeniería.
- 2. Método de las diferencias finitas para EDP s parabólic as, elípticas e hiperbólic as.
- 3. Introducción a los elementos finitos.

Actividades vinculadas:

Prueba E2 y Actividad A3.

Dedicación: 53h

Grupo grande/Teoría: 6h Grupo pequeño/Laboratorio: 12h Aprendizaje autónomo: 35h

Fecha: 10/10/2025 **Página:** 2 / 5

ACTIVIDADES

TÍTULO DE LA ACTIVIDAD 1: A1: PRELIMINAR

Descripción:

Actividad individual en el aula informática.

Objetivos específicos:

Al finalizar la actividad el estudiante debe ser capaz de:

- 1. Calcular solucion es de sistemas de ecuaciones no lineales.
- 2. Interpolar, aproximar e integrar funciones.
- 3. Saber modificar y mejorar códigos hechos con MATLAB.

Material:

MATLAB.

Entregable:

La actividad resuelta se entregará al profesor.

Representa una parte de la evaluación continuada de las enseñanzas de laboratorio.

Dedicación: 5h

Aprendizaje autónomo: 4h Grupo pequeño/Laboratorio: 1h

TÍTULO DE LA ACTIVIDAD 2: A2: EDO'S

Descripción:

Actividad individual en el aula informática.

Objetivos específicos:

Al finalizar la actividad el estudiante debe ser capaz de:

- 1. Utilizar los métodos para resolver problemas de valor inicial y de contorno en EDO's.
- 2. Aplicarlos a un problema concreto de ingeniería.

Material:

MATLAB.

Entregable:

La actividad resuelta se entregará al profesor.

Representa una parte de la evaluación continuada de las enseñanzas de laboratorio.

Dedicación: 10h

Aprendizaje autónomo: 8h Grupo pequeño/Laboratorio: 2h

Fecha: 10/10/2025 **Página:** 3 / 5

TÍTULO DE LA ACTIVIDAD 3: A3: EDP'S

Descripción:

Actividad individual en el aula informática.

Objetivos específicos:

Al finalizar la actividad el estudiante debe ser capaz de:

- 1. Utilizar el método de las diferencias finitas para los diferentes tipos EDP's estudiados.
- 2. Aplicarlos a un problema concreto de ingeniería.

Material:

MATLAB.

Entregable:

La actividad resuelta se entregará al profesor.

Representa una parte de la evaluación continuada de las enseñanzas de laboratorio.

Dedicación: 10h

Aprendizaje autónomo: 8h Grupo pequeño/Laboratorio: 2h

TÍTULO DE LA ACTIVIDAD 4: E1 Y E2: PRUEBAS ESCRITAS

Descripción:

Pruebas individuales en el aula relacionadas con los objetivos de aprendizaje de los contenidos de la asignatura.

Objetivos específicos:

Evaluar el logro general de los objetivos de los contenidos 1, 2 y 3. Aplicarlos a un problema concreto de ingeniería.

Material:

Enunciados de las pruebas (entregados en el momento de la prueba).

Entregable:

La actividad resuelta se entregará al profesor.

Representa una parte de la evaluación continuada de las enseñanzas de laboratorio.

Dedicación: 20h

Aprendizaje autónomo: 16h Grupo grande/Teoría: 4h

SISTEMA DE CALIFICACIÓN

La calificación se obtiene a partir de la nota NE, correspondiente a la actividad 4, y la nota NA correspondiente a las actividades 1, 2 y 3.

Se considerarán alcanzados los objetivos de la asignatura si tanto NE como NA son mayores o iguales que 3 y la nota final de la evaluación continua: NC = 0.7 * NE + 0.3 * NA es mayor o igual que 5.

Los estudiantes con una nota de curso (Nc) inferior a 5 pueden hacer un examen global (calificación: Ng). La nota final del estudiante será Nf = máximo (Nc, Ng).

En resumen,

EV1 - Pruebas parciales y/o globales o de síntesis --> 70%

EV2 - Prácticas de laboratorio y/o prácticas de ordenador --> 30%

Fecha: 10/10/2025 **Página:** 4 / 5

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Todas las actividades son obligatorias.

Si no se realiza alguna de las actividades de la asignatura, se considerará calificada con cero.

BIBLIOGRAFÍA

Básica:

- Chapra, S. C.; Canale, R. P. Métodos numéricos para ingenieros [en línea]. 5ª ed. México: McGraw-Hill, 2007 [Consulta: 08/06/2022]. Disponible a: https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=8100. ISBN 9789701061145.
- Aubanell, A.; Benseny, A.; Delshams, A. Eines bàsiques de càlcul numèric: amb 87 problemes resolts [en línea]. Barcelona: Universitat Autònoma de Barcelona, 1991 [Consulta: 07/10/2025]. Disponible a: https://web.mat.upc.edu/amadeu.delshams/articles/EBCN.pdf. ISBN 8479292318.
- Strikwerda, J. C. Finite difference schemes and partial differential equations. 2nd ed. Philadelphia: Society for Industrial and Applied Mathematics, 2004. ISBN 0898715679.
- Masdemont, J. Curs d'elements finits amb aplicacions [en línea]. Barcelona: Edicions UPC, 2002 [Consulta: 19/11/2020]. Disponible a: http://hdl.handle.net/2099.3/36166. ISBN 8483015951.

Complementaria:

- Burden, R. L.; Faires, J. D. Análisis numérico. 6ª ed. México: International Thompson, 1998. ISBN 9687529466.

Fecha: 10/10/2025 **Página:** 5 / 5