370507 - OPTIVISUAL - Visual Optics

Coordinating unit: 370 - FOOT - Terrassa School of Optics and Optometry
Teaching unit: 731 - OO - Department of Optics and Optometry
Academic year: 2017
Degree: BACHELOR’S DEGREE IN OPTICS AND OPTOMETRY (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: MONTSERRAT TÀPIAS ANTON
JOSÉ LUIS ÁLVAREZ MUÑOZ

Degree competences to which the subject contributes

Specific:
1. Technical english applied to optics and optometry
2. Understanding the mechanism of imaging and information processing in the visual system.
3. Being able to take, treat, represent and interpret experimental data. "Use basic laboratory equipment and techniques"
4. Knowing how to do clinical examinations and interpret the results
5. Evaluate the process of formation of the optical image in the retina and the transmission and information processing in the brain
6. Know interpret functional and health test results of the visual system.
7. Value the effects (perceptual changes) caused by the glasses, optical aids and protection elements in the visual system.

General:
8. Extract the main points of a text or any source of information (oral or written)
9. Synthesize and organize information to convey it effectively orally and / or written
10. Display information orally and in writing of reasonably and coherent.
11. Define the general objectives and to carry out a specific group
12. Assessing the acquisition of the course objectives.
13. Locate new information and the interpretation of it in its context.
14. Value the methods used to achieve the objectives.
15. Working with evidence, methodology and rigour.
370507 - OPTIVISUAL - Visual Optics

Teaching methodology

On the one hand the controlled learning hours consist of lectures (large group) in which the teachers make a brief introduction to the general learning objectives related to the basic concepts of matter. Through practical exercises we try to motivate and engage students to participate actively in their learning. It uses support material in the form of detailed syllabus by ATENEA: learning objectives for content, concepts, examples, programming and evaluation activities of learning and literature. On the other hand, can also consist of classes of problems (which works, generally in groups of 3 to 4 members), by solving exercises and numerical problems related to the specific learning objectives of each content of the course. In these sessions is to incorporate some problems generic skills such as teamwork competition.

The last type of controlled learning hours is to realize seven laboratory practices, which are made in couples. And can develop basic instrument skills in a laboratory and initiate the students in the application of scientific method in solving problems. The small group is subdivided into seven subgroups. Assigned to draw one of the 7 practices each subgroup, which we call sub-charge. This must prepare (with the help of the teacher and the script of practice) the practice in terms of theoretical, experimental method and material used. At the beginning of the laboratory session the subgroup will charge you a brief overview of the development of practice. The subgroup should also be able to resolve the doubts that may arise to their companions. The subgroup will be commissioned to develop a full practice, containing all the experimental results of their companions. The note of the report will count together with the development of the explanation of the practice in the laboratory, giving the fraction of EL rating. We must also consider other hours of independent learning such as those dedicated to the reading-oriented, solving proposed questionnaires or self-study of the contents through the virtual campus Atenea.

Learning objectives of the subject

Understand the process of image formation and properties of optical systems.
Recognize the eye as optical system.
Understand and handle basic laboratory equipment and techniques.
Knowing the parameters and models of eyes.
Understanding the factors that limit the quality of the retinal image.
Being able to perform psychophysical tests to determine levels of visual perception.
Knowing the properties and functions of the various elements of the visual system.
Understand the principles and have the ability to measure, interpret and treat abnormalities of binocular vision and accommodative.
Being able to measure and interpret the data obtained in psychophysical assessment of visual perception.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 154h</th>
<th>Hours large group:</th>
<th>0h</th>
<th>0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>48h</td>
<td></td>
<td>31.17%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>12h</td>
<td></td>
<td>7.79%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>10h</td>
<td></td>
<td>6.49%</td>
</tr>
<tr>
<td>Self study:</td>
<td>84h</td>
<td></td>
<td>54.55%</td>
</tr>
</tbody>
</table>
1. Introduction to Visual Optics

Learning time: 6h
Practical classes: 3h
Laboratory classes: 1h
Guided activities: 0h
Self study: 2h

Description:
This content is worked:

The concept of visual perspective and the situation within the context of degree
Geometrical optics applied to the eye: in notation convergence.

2. Model of the optical system of the eye. Training Images

Learning time: 42h
Practical classes: 15h
Laboratory classes: 4h
Guided activities: 0h
Self study: 23h

Description:
This content is worked:

Related activities:
It carried out activities 1 and 2.

Specific objectives:

3. Optics of the accommodating

Learning time: 23h
- Practical classes: 8h
- Laboratory classes: 2h
- Guided activities: 0h
- Self study: 13h

Description:
his content is worked:

Related activities:
It carries out activities 3.
4. Optics of refractive error and its neutralization

Learning time: 65h

- Practical classes: 21h
- Laboratory classes: 6h
- Guided activities: 0h
- Self study: 38h

Description:
This content is worked:

Related activities:
It carried out activities 4, 5 and 6.

5. Optical quality of the retinal image.

Learning time: 14h

- Theory classes: 0h
- Practical classes: 4h
- Laboratory classes: 2h
- Guided activities: 0h
- Self study: 8h

Description:
This content is worked:

Related activities:
It carries out activities 7.
Planning of activities

<table>
<thead>
<tr>
<th>1. LABORATORY. FIELD OF VIEW (CONTENT 2)</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori. The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.</td>
<td></td>
</tr>
<tr>
<td>Support materials:</td>
<td>Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td></td>
</tr>
<tr>
<td>Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>At the end of practice the student or student should be able to:</td>
</tr>
<tr>
<td>· Familiar with the tools and methods for measuring the visual field.</td>
<td></td>
</tr>
<tr>
<td>· Understand the variables that come into play in each of the two measuring instruments.</td>
<td></td>
</tr>
<tr>
<td>Obtain a field isoptera central and peripheral field and represent them in a diagram perimeter.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. LABORATORY. VISUAL ACUITY (CONTENT 2)</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori.</td>
<td></td>
</tr>
<tr>
<td>Support materials:</td>
<td>Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td></td>
</tr>
<tr>
<td>Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>At the end of practice the student or student should be able to:</td>
</tr>
<tr>
<td>· Calculate visual acuity for different screening criteria</td>
<td></td>
</tr>
<tr>
<td>· Determine the influence of visual acuity on clinical factors such as type of test, contrast and eccentricity.</td>
<td></td>
</tr>
<tr>
<td>· Recognising the different types of notation and know how to move from one to another.</td>
<td></td>
</tr>
<tr>
<td>· Mastering the use of letters optotips at different distances from the calibration</td>
<td></td>
</tr>
</tbody>
</table>
3. LABORATORY. PRESBYOPIA. AREAS OF VIEW OF A PRESBYTERIAN (CONTENT 3)

Hours: 2h
Laboratory classes: 2h

Description:
Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori.
The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.

Support materials:
All materials for the realization of the experiment in the laboratory
Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.

Descriptions of the assignments due and their relation to the assessment:
Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).

Specific objectives:
At the end of practice the student or student should be able to:
- Determine the variation of the different zones of vision in one eye emmetrop Presbyterian, for different values of the amplitude of accommodation, simulating the condition of presbyopia eye on an optical bench.

4. LABORATORY. SPHERICAL REFRACTIVE ERROR. MYOPIA. (CONTENT 4)

Hours: 2h
Laboratory classes: 2h

Description:
Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori.
The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.

Support materials:
All materials for the realization of the experiment in the laboratory
Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.

Descriptions of the assignments due and their relation to the assessment:
Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).

Specific objectives:
At the end of practice the student or student should be able to:
- To study the differences and similarities between axial myopia and refractive, and various aspects of the neutralization and the accommodation of the myopic, using a model eye on simulated optical bench.
5. LABORATORY. SPHERICAL REFRACTIVE ERROR. HYPEROPIA (CONTENT 4)

Description:
Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori. The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.

Support materials:
All materials for the realization of the experiment in the laboratory
Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.

Descriptions of the assignments due and their relation to the assessment:
Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).

Specific objectives:
- To study the differences between the axial and refractive hyperopia, and various aspects of the accommodation and the neutralization of hyperopia using a model eye on simulated optical bench.

6. LABORATORY. ASTIGMATISM (CONTENT 4)

Description:
Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that the students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori. The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.

Support materials:
All materials for the realization of the experiment in the laboratory
Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea.

Descriptions of the assignments due and their relation to the assessment:
Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).

Specific objectives:
- To study the formation of images of various objects to one eye astigmàtic, using a model eye on simulated optical bench.
- Understanding the ray tracing in one eye astigmàtic.
- Understanding the neutralization of the negative cylinder astigmatic eye.
7. LABORATORY. ABERRATIONS (CONTENT 5)

Hours: 2h
Laboratory classes: 2h

Description:
Practice should be done in the laboratory, in pairs, with a duration of 2 hours. The laboratory should carry out the experimental part, as a self-directed learning is planned that students do after reading the script and answer the questionnaire to identify relevant targets from the viewpoint of results of learning to be achieved after the experiment. Later, the teacher makes an oral test, using questions prior to testing to identify learning prelaboratori.
The practice is done in the Laboratory of Physiological Optics, TR8 building, floor -2.

Support materials:
All materials for the realization of the experiment in the laboratory
Written with the questionnaire and detailed notes of the theme available (PowerPoint) to Atenea

Descriptions of the assignments due and their relation to the assessment:
Register by the teachers check the students' independent learning and work in the laboratory and questionnaire results of the experiment at the end of the session. It becomes fixed and the corresponding feedback to the teacher the next session. Part of 10% of the final deliverables for the Laboratory (EL).

Specific objectives:
At the end of practice the student or student should be able to:
· Analyse the spherical and chromatic aberrations in a longitudinal and transverse theoretical model eye.
· Check · expression variation of aberrations according to several variables by fitting curve made with Excel.
· Familiar with optical design software Beam4.

8. TEST PART 1 (PAC1)

Hours: 1h
Practical classes: 1h

Description:
Proof of a single classroom hour with 1 or 2 years on a theoretical and practical concepts of the absolute minimum of the course.

Support materials:
Statements, form and calculator to perform the test.

Descriptions of the assignments due and their relation to the assessment:
Resolution of the test. Represents 35% of the final grade for the course.

Specific objectives:
After the test, the student or student should be able to:
· To achieve the specific objectives of the contents 1 and 1st half of the second.

9. TEST PART 2 (pac2)

Hours: 2h
Practical classes: 2h

Description:
Individual test in the classroom two hours with the contents of the course. Theoretical concepts of the course the absolute minimum resolution of 3 or 4 issues related to the learning of all course content.

Support materials:
Statements, form and calculator to perform the test.
PRACTICE TEST (PAL)

Description:
Test of a single classroom hour on the concepts and practical situations worked in the laboratory.

Support materials:
Statements, form and calculator to perform the test.

Specific objectives:
After the test, the student or student should be able to:
· Achieve the objectives of the laboratory course.

Qualification system

The final mark is the partial sum of the following qualifications:

\[QF = 0.25 \times PAC1 + 0.10 \times PAC2 + 0.35 \times PAC3 + 0.2 \times PAL + 0.1 \times EA \]

QF: final mark
PAC1: first test of continuous assessment
PAC2: second test of continuous assessment
PAC3: third test of continuous assessment
PAL: laboratory test
EA: classroom exercises and attendance

Regulations for carrying out activities

Attendance at lectures is mandatory because it is taken into account in the 10% of the final mark. So, attendance is monitored each day of class.

· If any of the laboratory activities is not done, it will be considered as non-rated and discounting from the total practical mark (PAL) 20 / n points for each session not attended (n is the number of practical sessions).
Bibliography

Basic:

Complementary:

