804226 - PROG1VJ - Programming I

Coordinating unit: 804 - CITM - Image Processing and Multimedia Technology Centre
Teaching unit: 804 - CITM - Image Processing and Multimedia Technology Centre
Academic year: 2017
Degree: BACHELOR'S DEGREE IN VIDEO GAME DESIGN AND DEVELOPMENT (Syllabus 2014). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN VIDEO GAME DESIGN AND DEVELOPMENT (Syllabus 2014). (Teaching unit Compulsory)
ECTS credits: 6

Teaching languages: Spanish

Teaching staff

Coordinator: ANA GABRIELA ZUÑIGA ZÁRATE, MAGÍ LLUCH-ARIET

Degree competences to which the subject contributes

Specific:
3. (ENG) Utilizar lenguajes de programación, patrones algorítmicos, estructuras de datos, herramientas visuales de programación, motores de juego y librerías para el desarrollo y prototipado de videojuegos, de cualquier género y para cualquier plataforma y dispositivo móvil.

General:
1. (ENG) Interpretar los fundamentos del uso y programación de los computadores, los sistemas operativos, las bases de datos y, en general, los programas informáticos con aplicación en ingeniería.
2. (ENG) Interpretar i dominar els conceptes bàsics de matemàtica discreta, lògica, algorísmica i complexitat computacional, i la seva aplicació per al tractament automàtic de la informació per mitjà de sistemes computacionals i la seva aplicació per a la resolució de problemes propis de l'enginyeria.

Transversal:
4. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
5. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Teaching methodology

Lectures are divided in 2h sessions. During lectures, the teacher presents the theoretical concepts and explains them by means of examples that are solved in class. Some time is also dedicated to the resolution of exercises by the students with the assistance of the teacher (solve the doubts that may appear). An extensive use of campus virtual is mandatory, since the material of the course (slides, exercises, exams, etc.) and the communication between the students and the teacher are done through this system.
Tasks of the course: There are three types of tasks that are planned during the course:
- Four practical exercises to evaluate specific topics of the course (PE).
- A midterm exam that is done in the midterms week 7, specified in the academic calendar (ME).
- The final exam (FE).

Learning objectives of the subject

Specific:
- Ability to understand and master the basic concepts of logic, algorithms and computational complexity, and its
application for solving problems of engineering.
- Knowledge of the basics of using and coding software with applications in engineering.
- Using programming languages, patterns and data structures.

Transversal:
- EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
- EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 24h</th>
<th>16.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 16h</td>
<td>10.67%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 20h</td>
<td>13.33%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

1. Basic concepts

<table>
<thead>
<tr>
<th>Learning time: 11h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h 30m</td>
</tr>
<tr>
<td>Self study: 6h 30m</td>
</tr>
</tbody>
</table>

Description:
- 1.1. Definitions: Algorithm and Program.
- 1.3. Compile and link.
- 1.4. Execution.
- 1.5. C compiler. Features.
- 1.6. Examples of games programmed in C.
- 1.7. Introduction to Visual Studio

Related activities:
Combine theoretical and practical activities.

2. Types, operators and expressions

<table>
<thead>
<tr>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:
- 2.1. Variable Names
- 2.2. Data types and sizes
- 2.3. Constants
- 2.4. Declarations
- 2.5. Arithmetic operators
- 2.6. Relation and logical operators
- 2.7. Casting types
- 2.8. Increment and decrement operators
- 2.9. Assignment operators and expressions

Related activities:
Combine theoretical and practical activities.
3. Control flow

Description:
- 3.1 Statements and blocks
- 3.2 If-else
- 3.3 Else-if
- 3.4 Switch
- 3.5 Loops-while and for
- 3.6 Loops-do-while
- 3.7 Break and continue

Related activities:
Combine theoretical and practical activities.

Learning time:
- 25h
 - Theory classes: 10h
 - Self study: 15h

Functions and program structure

Description:
- 4.1 Basics of Functions
- 4.2 Functions returning non-integers
- 4.3 External variables
- 4.4 Scope rules
- 4.5 Header files
- 4.6 Static variables
- 4.7 Register variables
- 4.8 Block structure
- 4.9 Initialization
- 4.10 The C preprocessor
- 4.11 Standard libraries

Related activities:
Combine theoretical and practical activities.

Learning time:
- 30h
 - Theory classes: 12h
 - Self study: 18h

Midterm exam 1

Description:
- Examen Parcial 1

Learning time:
- 2h
 - Theory classes: 2h
5. Arrays

Description:
- 5.1 One-dimensional arrays
- 5.2 Multidimensional arrays
- 5.3 Traversals and searches in arrays

Related activities:
Combine theoretical and practical activities.

Learning time: 30h
- Theory classes: 12h
- Self study: 18h

6. Structures

Description:
- 6.1 Basic structures
- 6.2 Structures and functions
- 6.3 Arrays of structures
- 6.4 Typedef
- 6.5 Unions

Related activities:
Combine theoretical and practical activities.

Learning time: 25h
- Theory classes: 10h
- Self study: 15h

7. Files

Description:
- 7.1 Introduction
- 7.2 Read files
- 7.3 Write files

Related activities:
Combine theoretical and practical activities.

Learning time: 15h
- Theory classes: 6h
- Self study: 9h
The mark of the subject (M) is computed as follows:

\[M = 0.2 \times ME + 0.4 \times PE + 0.3 \times FE + 0.1 \times PLA \]

where ME is the mark of the midterm exam, PE are the 3 practical exercises that will be done throughout the course (note that the mark each one corresponds to the 10% of the final mark of the subject), FE is the mark of the final exam and PLA is Participation and learning attitude.

Students who do not pass the subject through continuous assessment will have the possibility of presenting themselves to the re-assessment test. In this test all the qualifications will be reevaluated, except 10% of attitude and learning, and the resulting final grade of subject can not exceed 5.

Qualification system

Regulations for carrying out activities

Different exercises will be proposed at each class and the students have to solve before the next class individually. The solution must be upload to the Virtual Campus before the deadline.

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

C reference

http://en.cppreference.com/w/c