820002 - ES - Statistics

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2017
Degree:
- BACHELOR’S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
- BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: PABLO BUENESTADO CABALLERO
Others:
- Acho Zuppa, Leonardo
- Buenestado Caballero, Pablo
- Gago Alvarez, Silvia
- Gálvez Carrillo, Imma
- Magret Planas, Dolors
- Mujica Delgado, Luis Eduardo
- Palacios Quiñonero, Francisco
- Ruiz Ordoñez, Magda Liliana
- Claverol Aguas, Mercè

Opening hours

Timetable: Each teacher will serve students in his office according to the schedule published in ATENEA.

Requirements

To have passed Calculus.
To have studied Algebra and multivariable Calculus.
To have studied Numerical Calculus. Differential Equations

Degree competences to which the subject contributes

Specific:

1. Solve mathematical problems that may arise in engineering. Apply knowledge of linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial differential equations; numerical methods; numerical algorithms; statistics and optimisation.
Transversal:

2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.

Teaching methodology

The teaching methodology is distributed as follows:

- Lectures: 30%
- Practice classes with computer: 10%
- Self study: 42%
- Development of problems and reports: 15%
- Exams 3%

Learning objectives of the subject

Consolidate the fundamental concepts of statistics.

Identify the role of statistics in engineering problems.

Improve the students' skills in applying statistical tools to engineering modeling and problem-solving.

Use statistics to solve engineering problems or establish models.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

1. INTRODUCTION

<table>
<thead>
<tr>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 0h 30m</td>
</tr>
</tbody>
</table>

Description:
- Statistics in engineering.
- Objectives of statistics.
- Statistical method.
- History of statistics.

Related activities:
- Practice 1: Introduction to R. (Block 1)

Specific objectives:
- Demonstrate the important role of Statistics as a methodology in the study and resolution of various problems in engineering.
- Understand and appraise the possibilities of Statistics.
- Review the historical evolution of Statistics.
- Learn to install and start working with the statistical software R.
2. DESCRIPTIVE STATISTICS

Learning time: 17h
- Theory classes: 3h
- Laboratory classes: 4h
- Self study: 10h

Description:
- Definition of Descriptive Statistics (Exploratory Data Analysis)
- Objectives of Descriptive Statistics.
- General Concepts (Population, sample, variable, observation)
- Types of data.
- Frequency distribution.
- Graphic representations.
- Measures of central tendency.
- Measures of variability.
- Boxplot.
- Sample moments.
- Chebyshev inequality.
- Measures of Skewness and Kurtosis.
- Linear regression.

Related activities:
- Practice 2: Descriptive statistics. (Block 1)
- Practice 3: Linear Regression. (Block 1)
- Preparation of practice reports of block 1. Evaluation block 1.

Specific objectives:
Describe a methodology for organizing, representing and summarizing data sets in order to facilitate their evaluation and interpretation.

Know and appreciate the techniques for obtaining information from data.

Use the R software as a tool for the statistical descriptive analysis of a data set.

Build frequency tables.

Represent frequency tables.

Calculate and interpret the numerical descriptive measures of a data set.

Construct and interpret the boxplot.

Learn to calculate the parameters of the linear regression and to evaluate the goodness of fit.
3. ELEMENTS OF PROBABILITY

Description:
- Definition of Probability.
- Sample space of a random experiment.
- Events. Types of events.
- Operations with events.
- Probability rules.
- Conditional probability.
- Independent events.
- Total probability theorem. Bayes theorem.
- Some counting rules: Permutations, variations, combinations.

Related activities:
- Development of a report on probability problems.

Specific objectives:
- Describe the outcomes of a random experiment in terms of the sample space.
- Define the probability function.
- Know the probabilistic elements for modeling random systems.
- Understand and apply the concepts of conditional probability and independent events.
- Know the main probability rules and apply them judiciously in practical problem-solving.
- Describe, motivating through practical examples, many of the concepts needed for the study of statistical inference.
4. RANDOM VARIABLES

Description:
- Definition of a Random Variable.
- Discrete and continuous random variables.
- Probability mass function and probability density function.
- Probability distribution function.
- Measures of central tendency.
- Measures of dispersion.
- Moments of a Random Variable.
- Chebychev theorem.
- Transformation of random variables.

Related activities:
- Preparation of a report on random variable problems.

Specific objectives:
- Present the concept of random variable.
- Calculate and interpret the expectation and variance of random variables.
- Understand and properly handle discrete and continuous random variables.
- Relate the new concepts with those studied in descriptive statistics.
5. PROBABILISTIC MODELS IN ENGINEERING

Learning time: 30h
- Theory classes: 6h
- Laboratory classes: 4h
- Self study: 20h

Description:

DISCRETE MODELS:
- Uniform distribution.
- Bernoulli, Binomial, Negative Binomial, and Hypergeometric distribution.
- Poisson distribution.

CONTINUOUS MODELS:
- Uniform distribution.
- Exponential distribution.
- Normal distribution.

Related activities:

- Preparation of problems on probabilistic models.
- Report 1.
- Practice 4: Discrete Probabilistic models. (Block 2)
- Practice 5: Continuous Probabilistic models. (Block 2)
- Preparation of practice reports of block 2. Evaluation block 2.
- Partial Exam 1.

Specific objectives:

- Define and study the probability distributions most commonly used in engineering.
- Use the R software as a computational tool for solving problems on probabilities and random variables.
6. SAMPLING. CENTRAL LIMIT THEOREM.

<table>
<thead>
<tr>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

Description:

Types of sampling.

Statistical distributions.

Laws of large numbers.

Central Limit Theorem.

Related activities:

Practice 6: Sampling. Sampling distributions of statistics. (Block 3)

Specific objectives:

Present some basic theoretical elements associated to random sampling and statistical inference.

Know the most common techniques of data collection.

Illustrate different techniques that allow applying the inductive process of statistical inference in order to obtain useful and reliable results.

Use common sampling distributions, as the Student's T distribution.

Learn some practical applications of the Central Limit Theorem.

Use the normal distribution to approximate some discrete distributions.
7. POINT AND INTERVAL ESTIMATION

Description:

Estimators: definition and properties.

Confidence interval estimation of the mean, variance and proportion.

Related activities:

Problems on point estimation.
Development of problems on interval estimation.

Specific objectives:

- Estimate the value of a parameter from sample information.
- Study the two most common methods for determining point estimates.
- Study the most important properties of the estimators.
- Know the sampling distributions of the estimators associated to normal, binomial and Poisson random variables.
- Explain and apply interval estimation of the mean and variance of normal populations and approximately normal populations.
- Know how to use the tables of the usual distributions associated to interval estimation.
- Use the R software for calculating confidence intervals.

Learning time: 20h
- Theory classes: 8h
- Self study: 12h
8. HYPOTHESIS TESTING

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis testing of parametric models.</td>
</tr>
<tr>
<td>Errors associated to hypothesis testing.</td>
</tr>
<tr>
<td>P-value computation.</td>
</tr>
<tr>
<td>Statistical power.</td>
</tr>
<tr>
<td>Model testing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of problems on statistical hypothesis testing.</td>
</tr>
<tr>
<td>Report 2.</td>
</tr>
<tr>
<td>Practice 7: Confidence intervals. Hypothesis testing. (Block 3)</td>
</tr>
<tr>
<td>Partial exam 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study statistical hypothesis testing and its application to means, proportions, etc.</td>
</tr>
<tr>
<td>Be able to apply judiciously the most common statistical tests, appreciating their possibilities and limitations.</td>
</tr>
<tr>
<td>Calculate the p-value associated to a hypothesis test.</td>
</tr>
<tr>
<td>Understand the decision errors associated with hypothesis testing.</td>
</tr>
<tr>
<td>Use the R software as a computational tool to solve problems on statistical hypothesis tests.</td>
</tr>
</tbody>
</table>
Qualification system

The subject is declared within a framework of continuous evaluation. The global course mark (GCM) will be computed according to the weighting below. A global course mark 5.0 or higher is required to pass the course:

- Realization of two exams: 70% (30% first and 40% in the second)
- Statistic practices with R: 15% (block 1: 5%, block 2: 5%, block 3: 5%)
- Problem reports (individual): 10% (report 1: 5% and report 2: 5%)
- Generic Competence (Oral and written effective communication): 5% (Competence is evaluated according to the writing of the reports)

In the event that a student does not pass the subject for continuous assessment, the school offers the opportunity to approve the subject by preparing a test (Reevaluation). Only suspended students with a mark equal to or greater than 3 of the weighted grade of the exams and have participated and delivered all the tests of the course of Statistics can only take the exam.

The reassessment global mark (RGM) will be computed according to the following weighting:

- Reassessment exam: 70%
- Statistic practices with R: 15% (block 1: 5%, block 2: 5%, block 3: 5%)
- Problem reports: 10% (report 1: 5% and report 2: 5%)
- Generic Competence (Oral and written effective communication): 5% (Competence is evaluated according to the writing of the reports)

Students with a global reassessment global mark 5.0 or higher, will pass the course with a final mark 5.0. Students with a reassessment global mark lesser than 5.0, will fail to pass the course. In this case the final course mark will be max(CGM,RGM)

Regulations for carrying out activities

The student must bring their passport to the exams.

The student must provide a detailed solution of the problems (in exams and reports).
Bibliography

Basic:

Complementary:

Others resources:

Computer material

Probabilitat i estadística matemàtica : teoria i problemes resolts