

Course guide

820006 - I - Informatics

Last modified: 29/01/2026

Unit in charge:	Barcelona East School of Engineering
Teaching unit:	723 - CS - Department of Computer Science. 707 - ESAII - Department of Automatic Control.
Degree:	BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject). BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2025

ECTS Credits: 6.0

Languages: Catalan, Spanish, English

LECTURER

Coordinating lecturer:	JAVIER FARRERES DE LA MORENA - FABIÁN ROLANDO RIQUELME CSORI
Others:	Primer quadrimestre: JOAN FRANCESC ALONSO LÓPEZ - Grup: M23, Grup: T11, Grup: T12, Grup: X13 IRIS BALCÁZAR CASTELL - Grup: M41, Grup: T12 JOSÉ LUIS BALCÁZAR NAVARRO - Grup: M11 NEUS CATALA ROIG - Grup: M22, Grup: M83, Grup: M93 JAVIER FARRERES DE LA MORENA - Grup: M43, Grup: M51, Grup: M53, Grup: M81, Grup: M82, Grup: M83, Grup: X11, Grup: X12, Grup: X13 DAVID MARTÍNEZ ESCACHX - Grup: M31, Grup: M73 CHRISTIAN MATA MIQUEL - Grup: M11 FRANCISCO JOSÉ MUGICA ALVAREZ - Grup: T11, Grup: X11, Grup: X21, Grup: X22 SERGIO PAVÓN SALAMANCA - Grup: T22, Grup: X12 ELVIRA PATRICIA PINO BLANCO - Grup: M21, Grup: M22, Grup: M23, Grup: M41, Grup: M42, Grup: M43, Grup: M51, Grup: M52, Grup: M53, Grup: M61, Grup: M62, Grup: M63, Grup: M71, Grup: M72, Grup: M73 CARLES PLANUCH PRATS - Grup: T21, Grup: T22, Grup: X22 FABIÁN ROLANDO RIQUELME CSORI - Grup: M33, Grup: M61, Grup: M82, Grup: M91, Grup: M92, Grup: M93 MÓNICA MARLENE ROJAS MARTÍNEZ - Grup: M31, Grup: M32, Grup: M33, Grup: M52, Grup: M72 FERRAN SANABRIA ORTEGA - Grup: M63, Grup: M71 MARIA JOSEFINA SIERRA SANTIBAÑEZ - Grup: M42, Grup: M62, Grup: M81 JORGE TURMO BORRÁS - Grup: M21, Grup: M32, Grup: M91, Grup: M92

Segon quadrimestre:

IRIS BALCÁZAR CASTELL - Grup: M11, Grup: M12
DAVID MARTÍNEZ ESCACHX - Grup: M21
SERGIO PAVÓN SALAMANCA - Grup: T11, Grup: T12
ELVIRA PATRICIA PINO BLANCO - Grup: M11, Grup: M12
CARLES PLANUCH PRATS - Grup: T11, Grup: T12
FABIÁN ROLANDO RIQUELME CSORI - Grup: M21, Grup: M22

PRIOR SKILLS

There are no previous capacities.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

2. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Transversal:

1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.

TEACHING METHODOLOGY

This subject consists of 2-hour weekly presential classes (large group), and a 2-hour weekly session in the laboratory. During the large group classes, theoretical explanations will be combined with examples and active solving of exercises by the students. During the laboratory sessions the students will follow the laboratory teacher proposed activities.

LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, the student:

0. Learn the basics of hardware and operating systems.
1. Recognize and appropriately apply the iterative search and travel schemes in trouble small and medium size. For this:
 1. know the basic constituents of imperative languages: variables, types, expressions, statements.
 2. know the three basic algorithmic compositions and properties: sequential, alternative and iterative.
 3. Know and use the concept of data stream i their properties.
2. Can design and use functions. For this:
 1. Know and apply the parameterization.
3. Perform treatment programs sequences over:
 1. structured variables.
 2. files.
 3. input data.
4. It will be able to use external libraries own field of engineering. For this:
 1. Be familiar with standard software systems documentation.
 2. will be able to include and use the libraries in their programs.

Currently the programming language used as a base is a subset of Python, although the main aim is not in learning the details of language but in solving algorithmic problems and building structured programs.

STUDY LOAD

Type	Hours	Percentage
Hours small group	30,0	20.00
Hours large group	30,0	20.00
Self study	90,0	60.00

Total learning time: 150 h

CONTENTS

Chapter 1 - Basic concepts

Description:

Computer architecture: von Neumann model, computer elements.
Operative system: virtual machine, resources manager.

Specific objectives:

0. Learn the basics of hardware and operating systems.

Related activities:

Theoretical classes.

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 2h

Laboratory classes: 2h

Chapter 2 - Structured programming basics

Description:

Variables
Data types
Statements: assign, input, output
Expressions, operators and precedence
Variables, constants and data types.
Algorithm structure.
Elementary instructions: reading, writing, assigning.

Specific objectives:

1. Recognize and appropriately apply the iterative search and travel schemes in trouble small and medium size. For this:
1. know the basic constituents of imperative languages: variables, types, expressions, statements.

Related activities:

Theoretical classes.
Practical classes

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 16h

Theory classes: 4h
Laboratory classes: 4h
Self study : 8h

Chapter 3- Compositions sequential, alternative and iterative

Description:

Concept of data sequence

Development of the algorithmic structures resulting from the structured program theorem:

Sequential composition

Alternative composition

Iterative composition

Iterative schemes

Specific objectives:

1. Recognize and appropriately apply the iterative search and travel schemes in trouble small and medium size. For this:
 2. know the three basic algorithmic compositions and properties: sequential, alternative and iterative.
 3. Know and use the concept of data stream i their properties.

Related activities:

Theoretical classes.

Practical classes

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 20h

Theory classes: 4h

Laboratory classes: 6h

Self study : 10h

Chapter 4 - Functions and parameters

Description:

Input parameters

Output parameters

Design with functions

Specific objectives:

2. Can design and use functions. For this:
 1. Know and apply the parameterization.

Related activities:

Theoretical classes

Practical classes

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 14h

Theory classes: 2h

Laboratory classes: 4h

Self study : 8h

Chapter 5- Structured Types

Description:

String treatment
Homogeneous and heterogeneous lists treatment
Dictionaries
Files and data bases

Specific objectives:

1. Recognize and appropriately apply the iterative search and travel schemes in trouble small and medium size. For this:
 3. Know and use the concept of data stream i their properties.
3. Perform treatment programs sequences over:
 1. structured variables.
 2. files and databases.

Related activities:

Theoretical classes
Practical classes

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 39h

Theory classes: 9h
Laboratory classes: 8h
Self study : 22h

Chapter 6 - Sequential Treatment Schemas

Description:

Concept of travel and search
Troubleshooting

Specific objectives:

1. Recognize and appropriately apply the iterative search and travel schemes in trouble small and medium size. For this:
 3. Know and use the concept of data stream i their properties.
3. Perform treatment programs sequences over:
 1. structured variables.
 2. files and databases.
 3. input data.

Related activities:

Theoretical classes
Practical classes

Related competencies :

CEB-03. Understand the basics behind the use and programming of PCs, operating systems, databases and software with applications in engineering.

Full-or-part-time: 36h

Theory classes: 8h
Laboratory classes: 6h
Self study : 22h

GRADING SYSTEM

The final note of the subject results from the following addition:

$$FG = 15\% \text{ TC} + 45\% \text{ PL} + 40\% \text{ PT}$$

FG: Final Grade

TC: Continuous work

PL: Laboratory partial exam

PT: Theory partial exam

This course has a final reassessment test. In accordance with EEBE academic regulations, students who do not pass the course through the described system, have a grade of $3 < FG < 5$, and have taken all assessment activities, will have a reassessment exam during the period specified in the academic calendar.

EXAMINATION RULES.

- All activities are part of the continuous assessment model of the subject. Therefore, students repeating this subject will not be allowed to save any part of their notes for the following term.
- Students will be allowed to consult a reference card of the programming language during the partial and final assessment exercises.
- Solutions must be restricted to the contents explained in the theoretic sessions.
- The use of generative AI tools to solve problems is not allowed. Their use will result in a direct failure of the course.

BIBLIOGRAPHY

Basic:

- Wentworth, Peter; Elkner, Jeffrey; Downey, Allen B.; Meyers, Chris. How to think like a computer scientist : learning with Python 3 [on line]. Openbookproject.net, 2012 [Consultation: 08/06/2016]. Available on: <http://openbookproject.net/thinkcs/python/english3e/>.

Complementary:

- Zelle, John Marvin. Python programming : an introduction to computer science. 2nd ed. Franklin, Beedle & Associates, 2010. ISBN 9781590282410.
- Matthes, Eric. Python crash course [on line]. No Starch Press, Inc, 2015 [Consultation: 29/05/2020]. Available on: <https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=4503145>. ISBN 9781593276034.