820025 - EMDTB - Monitoring, Diagnostic and Therapeutic Equipment

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN BIOMEDICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Javier Rosell Ferrer
Others: Nescolarde Selva, Lexa Digna

Prior skills
To have passed the subject on Sensors, Conditioning and Acquisition of Biomedical Signals

Degree competences to which the subject contributes

Specific:
2. Identify, Understand and apply the principles of the equipment and systems used for monitoring, diagnosing and treating patients.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology
Expository methodology, group work and learning through guided activities

Learning objectives of the subject
To understand the concept of instrumentation systems. To know specific characteristics of biomedical systems and equipment. To understand and analyze monitoring, diagnostic and therapy biomedical systems and equipment datasheets

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>30.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
820025 - EMDTB - Monitoring, Diagnostic and Therapeutic Equipment

Content

<table>
<thead>
<tr>
<th>Topic 1: Measurement systems introduction</th>
<th>Learning time: 11h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Basic definitions. Biomedical instrumentation system general structure. Dynamic and static characteristics. Biomedical equipment definitive characteristics. Biomedical equipment classifications.</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Related activities: Classroom activity: static and dynamic characterization of two measurement systems. Deliverable 1: Characterization of a measurement systems.</td>
<td>Self study: 5h</td>
</tr>
<tr>
<td>Specific objectives: To understand the special characteristics of biomedical measurement systems.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 2: Bioelectric signals</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities: Lab 1: ECG measurement, QRS detection and heart rate variability. Classroom activities: Comparison of characteristics of biopotential amplifiers. Interference analysis in a biopotential measurement system. Deliverable 2: Biopotential amplifier analysis.</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Specific objectives: To know the characteristics of the most important bioelectric signals and how they are acquired</td>
<td>Self study: 13h</td>
</tr>
</tbody>
</table>
820025 - EMDTB - Monitoring, Diagnostic and Therapeutic Equipment

Topic 3: Measurements in the cardiovascular system

Description:

Related activities:
- Lab 2: Measurement of the pulse wave and transit time
- Classroom activity: Hydrostatic pressure effect on blood pressure estimation
- Deliverable 3: Fick's method

Specific objectives:
To know the signals to be measured and the measurement methods in the cardiovascular system.

<table>
<thead>
<tr>
<th>Learning time: 17h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Topic 4: Measurement in the respiratory system

Description:
Respiratory pressure and flow measurement. Lung volume measurement. Respiratory mechanics

Related activities:
- Lab 3: Breathing measurement and respiratory rhythm
- Classroom activity: Comparison of spirometers
- Deliverable 4: Apnea detection

Specific objectives:
To know the signals and measurement methods used to evaluate the respiratory system

<table>
<thead>
<tr>
<th>Learning time: 17h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Topic 5: Medical imaging equipment

Description:

Related activities:
- Classroom activities: X-ray atenuation across tissues, resonant frequency on MRI
- Deliverable 5: Transit time and Doppler shift in tissues

Specific objectives:
To know the measurement principles of medical imaging systems and their particular characteristics

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>
Topic 6: Therapy equipment

Learning time: 9h
- Theory classes: 5h
- Self study: 4h

Description:
Surgery, diathermy, cryotherapy and lithotripsy equipment

Related activities:
Classroom activity: electrosurgical units comparison
Deliverable 6: Cardiac ablation systems

Specific objectives:
To know the functional principles of therapy equipment

Research project

Learning time: 56h
- Theory classes: 4h
- Laboratory classes: 6h
- Self study: 46h

Qualification system

Final exam: 30%
Midterm exam: 20%
Guided Lab: 20%
Research Project: 30%

Bibliography

Basic:

Complementary: