820066 - MSSD - Modelling and Simulation of Dynamical Systems

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering

Teaching unit: 707 - ESI AI - Department of Automatic Control

Academic year: 2015

Degree:
- Bachelor's Degree in Electrical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Mechanical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Chemical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Biomedical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Energy Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Mechanical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Energy Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Electrical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Industrial Electronics and Automatic Control Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Biomedical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Chemical Engineering (Syllabus 2009). (Teaching unit Optional)
- Bachelor's Degree in Industrial Electronics and Automatic Control Engineering (Syllabus 2009). (Teaching unit Optional)

ECTS credits: 6

Teaching languages: Catalan

Teaching staff

Coordinator: Antoni Grau Saldes

Others: Montserrat Vallverdu

Degree competences to which the subject contributes

Specific:
1. Analyse, design, simulate and optimise processes and products.
2. Design, manage and run simulation, control and instrumentation procedures in chemical processes.
3. Model and simulate systems.

Transversal:
4. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 3. Taking social, economic and environmental factors into account in the application of solutions. Undertaking projects that tie in with human development and sustainability.
5. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Teaching methodology

M

Learning objectives of the subject

O
Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>45h</td>
<td>0h</td>
<td>15h</td>
<td>90h</td>
<td>12h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00%</td>
<td>0.00%</td>
<td>10.00%</td>
<td>60.00%</td>
<td></td>
</tr>
</tbody>
</table>

Content

Content

(ENG) Tema 2. Modelització de Sistemes multitecnologia

Learning time: 35h
 - Theory classes: 10h
 - Laboratory classes: 4h
 - Self study: 21h

(ENG) Tema 3. Simulació de sistemes continus.

Learning time: 35h
 - Theory classes: 10h
 - Laboratory classes: 4h
 - Self study: 21h

(ENG) Tema 4. Mètodes numèrics d’integració

Learning time: 35h
 - Theory classes: 10h
 - Laboratory classes: 4h
 - Self study: 21h

(ENG) Tema 5. Identificació de Sistemes

Learning time: 33h
 - Theory classes: 9h
 - Laboratory classes: 3h
 - Self study: 21h
Qualification system

S

Bibliography