

Guía docente 820092 - NSAE - Simulación Numérica Aplicada a la Ingeniería

Última modificación: 14/06/2023

Unidad responsable: Escuela de Ingeniería de Barcelona Este **Unidad que imparte:** 748 - FIS - Departamento de Física.

Titulación: GRADO EN INGENIERÍA ELÉCTRICA (Plan 2009). (Asignatura optativa).

GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA (Plan 2009). (Asignatura optativa).

GRADO EN INGENIERÍA MECÁNICA (Plan 2009). (Asignatura optativa). GRADO EN INGENIERÍA QUÍMICA (Plan 2009). (Asignatura optativa). GRADO EN INGENIERÍA DE MATERIALES (Plan 2010). (Asignatura optativa).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Domingo García Senz

Otros: Domingo García Senz

Jordi José Pont

CAPACIDADES PREVIAS

Habilidad para el trabajo con el ordenador y minimos conocimientos de algún lenguaje de programación.

REQUISITOS

Conocimientos básicos de álgebra, cálculo y física. El curso se impartirá en inglés.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Transversales:

1. APRENDIZAJE AUTÓNOMO - Nivel 3: Aplicar los conocimientos alcanzados en la realización de una tarea en función de la pertinencia y la importancia, decidiendo la manera de llevarla a cabo y el tiempo que es necesario dedicarle y seleccionando las fuentes de información más adecuadas.

METODOLOGÍAS DOCENTES

Se utilizará la metodología expositiva en un 40 %, el trabajo personal en un 35 % y el trabajo en grupo en un 25 %.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Introducir al estudiante en las técnicas básicas de análisis y simulación numérica y sus aplicaciones a problemas sencillos de ingeniería.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	45,0	30.00
Horas grupo pequeño	15,0	10.00

Fecha: 07/07/2023 **Página:** 1 / 3

Dedicación total: 150 h

CONTENIDOS

Elementos de cálculo numérico.

Descripción:

Interpolación y ajuste. Cálculo matricial aplicado (algoritmia de inversión de matrices, la matriz homogénea de transformación, matrices dispersas). Introducció a la geometría fractal. Derivación numérica, resolución mumérica de ecuaciones diferenciales, estabilidad. Métodos explícitos e implícitos de resolución. La transformada rápida de Fourier, FFT.

Objetivos específicos:

Introducir al estudiante a algunas técnicas numéricas indispensables para programar y realizar simulaciones de sistemas físicos de interés en ingenieria.

Actividades vinculadas:

Se dedicará parte de la sesión de laboratorio a implementar sencillos algoritmos de programación usando la herramienta MatLab.

Dedicación: 60h

Grupo grande/Teoría: 24h Aprendizaje autónomo: 36h

-Tema 2: Aplicaciones a diferentes ramas de la ingeniería.

Descripción:

Aplicación de la matriz homoénea de transformación a la resolución de sistemas mecánicos articulados. Solución de la ecuación de Laplace y aplicación a sistemas electrostàticos. Aplicación al transporte de calor. Solución numérica de un sistema acoplado de reacciones químicas. Simulación de órbitas de planetas y satélites artificiales. Introducción a la simulación del movimiento de fluidos.

Objetivos específicos:

Aplicar los métodos numéricos explicados en el primer tema a la resolución de problemas prácticos de ingenieria.

Actividades vinculadas:

En las sesiones de laboratorio y, utilizando MatLab, se implementaran algunos algoritmos relacionados con los conceptos explicados en las clases de teoría. Los alumnos deberán realizar la simulación de un sistema físico de interés en ingeniería como trabajo de curso. Se realizará una exposición pública del trabajo.

Dedicación: 60h

Grupo grande/Teoría: 24h Aprendizaje autónomo: 36h

SISTEMA DE CALIFICACIÓN

Dos pruebas de clase P1 y P2 y la valoración de un trabajo ,T, consistente en planificar y diseñar un algortimo de cálculo relativo a algún problema de ingenieria.

Nota Final = 0.25 P1 + 0.25 P2 + 0.5 T

Esta asignatura no contempla prueba de reevaluación final. La realización de prácticas no es obligatoria.

La competencia genérica se evaluará teniendo en cuenta: 1) La abilidad del estudiante para aplicar los conceptos explicados en clase a problemas concretos de ingeniería, 2) La capacidad de mejora, auto estudio y trabajo en grupo, 3) La capacidad de realizar exposición pública del trabajo realizado.

El peso de la competencia genérica en la evaluación de la asignatura será del 10%.

Fecha: 07/07/2023 **Página:** 2 / 3

BIBLIOGRAFÍA

Básica:

- DeVries, Paul L.; Hasbun, Javier Ernesto. A First course in computational physics. 2nd ed. Sudbury, Massachusetts: Jones and Bartlett Publishers, cop. 2011. ISBN 9780763773144.
- Howison, Sam. Practical applied mathematics: modelling, analysis, approximation. New York: Cambridge University Press, 2005. ISBN 0521842743.

Fecha: 07/07/2023 **Página:** 3 / 3