

Guía docente 820129 - SEPEE - Sistemas Eléctricos de Potencia

Última modificación: 02/10/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 709 - DEE - Departamento de Ingeniería Eléctrica.

Titulación: GRADO EN INGENIERÍA ELÉCTRICA (Plan 2009). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: JUAN JOSE MESAS GARCIA

Otros: Primer quadrimestre:

JAIME BUSTO ABADIA - Grup: T11, Grup: T12 JUAN JOSE MESAS GARCIA - Grup: T11, Grup: T12

CAPACIDADES PREVIAS

Las adquiridas en las asignaturas CÁLCULO, ÁLGEBRA Y CÁLCULO MULTIVARIABLE, CÁLCULO NUMÉRICO - ECUACIONES DIFERENCIALES, SISTEMAS ELÉCTRICOS, CIRCUITOS Y SEÑALES, MÁQUINAS ELÉCTRICAS I / II, INSTALACIONES ELÉCTRICAS DE BAJA Y ALTA TENSIÓN I.

REQUISITOS

INSTAL·LACIONS ELÈCTRIQUES DE BAIXA I ALTA TENSIÓ I - Prerequisit MÀQUINES ELÈCTRIQUES II - Prerequisit

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEELE-23. Capacidad para el cálculo y diseño de líneas eléctricas y transporte de energía eléctrica.

CEELE-24. Conocimiento sobre sistemas eléctricos de potencia y sus aplicaciones.

Transversales:

07 AAT N3. APRENDIZAJE AUTÓNOMO - Nivel 3: Aplicar los conocimientos alcanzados en la realización de una tarea en función de la pertinencia y la importancia, decidiendo la manera de llevarla a cabo y el tiempo que es necesario dedicarle y seleccionando las fuentes de información más adecuadas.

METODOLOGÍAS DOCENTES

La metodología docente utilizada en esta asignatura se puede dividir en tres partes:

- Clases magistrales: teoría y problemas (30%)
- Sesiones de laboratorio (10%)
- Aprendizaje basado en el trabajo individual (60%)

Fecha: 06/10/2025 **Página:** 1 / 4

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Proporcionar conocimientos sobre el cálculo de líneas aéreas y los sistemas eléctricos de potencia:

- Componentes, estructura y funciones del sistema de transporte y distribución de energía eléctrica.
- Líneas aéreas: Parámetros eléctricos. Circuitos equivalentes. Análisis en régimen permanente. Cálculo de líneas aéreas empleando el sistema por unidad (p.u.).
- Transformadores: Tipos, conexiones y circuitos equivalentes.
- Flujo de cargas en sistemas de potencia: Matriz de admitancias de bus. Planteamiento del problema. Algoritmos de resolución.
- Cálculo mecánico de líneas aéreas: Tipos de apoyos. Cálculo de la flecha. Cálculo de las tensiones en el cable. Influencia de la temperatura y otras condiciones atmosféricas. Cálculo de cambio de estado. RLAT.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo pequeño	15,0	10.00
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	45,0	30.00

Dedicación total: 150 h

CONTENIDOS

Introducción

Descripción:

Componentes, estructura y funciones del sistema de transporte y distribución de energía eléctrica.

Dedicación: 6h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 5h

Líneas aéreas 1

Descripción:

Parámetros eléctricos. Circuitos equivalentes.

Dedicación: 17h 30m Grupo grande/Teoría: 4h 30m Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 10h

Líneas aéreas 2

Descripción:

Análisis en régimen permanente.

Dedicación: 35h

Grupo grande/Teoría: 12h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 20h

Fecha: 06/10/2025 **Página:** 2 / 4

Líneas aéreas 3

Descripción:

Cálculo de líneas aéreas empleando el sistema por unidad (p.u.).

Dedicación: 11h

Grupo grande/Teoría: 3h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 5h

Transformadores

Descripción:

Tipos, conexiones y circuitos equivalentes.

Dedicación: 35h

Grupo grande/Teoría: 12h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 20h

Flujo de cargas en sistemas de potencia

Descripción:

Matriz de admitancias de bus. Planteamiento del problema. Algoritmos de resolución.

Dedicación: 32h Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 20h

Cálculo mecánico de líneas aéreas

Descripción:

Tipos de apoyos. Cálculo de la flecha. Cálculo de las tensiones en el cable. Influencia de la temperatura y otras condiciones atmosféricas. Cálculo de cambio de estado. RLAT.

Dedicación: 13h Grupo grande/Teoría: 3h Aprendizaje autónomo: 10h

Fecha: 06/10/2025 **Página:** 3 / 4

SISTEMA DE CALIFICACIÓN

La Nota final de Asignatura (N_Asig) se calcula, redondeada a la décima más cercana, utilizando la fórmula

N_Asig = 0.172 • N_ExPar + 0.494 • N_ExFin + 0.167 • N_TP1 + 0.167 • N_TP2

donde

N_ExPar es la Nota del Examen Parcial N_ExFin es la Nota del Examen Final N_TP1 es la Nota del Trabajo de Prácticas 1 N_TP2 es la Nota del Trabajo de Prácticas 2

OBSERVACIONES IMPORTANTES:

- ES OBLIGATORIO realizar los Trabajos de Prácticas propuestos en las sesiones de laboratorio para aprobar la asignatura.
- Esta asignatura NO tiene Examen de Reevaluación.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

- El Examen Parcial y el Examen Final son individuales, presenciales y por escrito.
- Adicionalmente a los utensilios para escribir, sólo se puede disponer de un formulario (una única hoja A4 manuscrita original) que se entregará al profesor al final de cada examen, y de una calculadora sin conectividad externa (no se puede utilizar ningún teléfono móvil ni tablet como tal).
- Se ruega máxima puntualidad.

BIBLIOGRAFÍA

Básica:

- Ramírez Rosado, Ignacio J. [et al.]. Problemas resueltos de sistemas de energía eléctrica. Madrid: Thomson, cop. 2007. ISBN 9788497324083.
- Bergen, Arthur R. Power systems analysis. 2nd ed. Upper Saddle River, N.J: Prentice-Hall, cop. 2000. ISBN 0136919901.
- Elgerd, Olle Ingemar. Electric energy systems theory : an introduction. 2nd ed. New York [etc.]: McGraw-Hill, cop. 1982. ISBN 0070192308.
- Glover, J. Duncan; Sarma, Mulukutla S. Power system analysis and design: with personal computer applications. 2nd ed. Boston: PWS Publishing Company, 1994. ISBN 0534939600.
- Ras Oliva, Enrique. Teoría de líneas eléctricas : de potencia, de comunicación, para transmisión en continua. 2ª ed. Barcelona: Marcombo, 1985. ISBN 8460058921.
- Stevenson, William D., Jr. Elements of power system analysis. 4th ed. New York [etc.]: McGraw-Hill, cop. 1982. ISBN 0070612781.

Fecha: 06/10/2025 Página: 4 / 4