820148 - EMO - Electric Mobility

Coordinating unit: 295 - EEBE - Barcelona East School of Engineering
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2015
Degree:
BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: English

Teaching staff
Coordinator: DANIEL MONTESINOS MIRACLE
Others: DANIEL MONTESINOS MIRACLE

Prior skills
Knowledge on electrical circuits is highly recommended.

Degree competences to which the subject contributes

Specific:
7. Analyse and simulate specific energy systems.
8. Assess and compare the energy capacitance and potential of the energy resources available.
9. Design automatic control systems.
10. Determine the best way to store energy on a case-by-case basis.
11. Explain energy resources, their characteristics and where they come from.
12. Model and simulate systems.
13. Perform energy balances and detect losses based on the operating principles of generators and boilers and of energy transformation inside machines.
14. Understand and apply the theory of electrical circuits and machines.
15. Understand automatic regulation and control techniques and their application to industrial automation.
16. Understand the applications of power electronics.
17. Understand the applications of power electronics.

Transversal:
Electrical aspects of electric mobility will be addressed, from technology description, modeling and on-board energy management system.

Learning objectives of the subject

Electrical aspects of electric mobility will be addressed, from technology description, modeling and on-board energy management system.

Teaching methodology

Theory / Problems / Lab presential classes + non-presential exercises

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
820148 - EMO - Electric Mobility

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Theory classes</th>
<th>Practical classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric mobility introduction</td>
<td>4h</td>
<td>4h</td>
<td></td>
</tr>
<tr>
<td>Energy sources and storage systems</td>
<td>4h</td>
<td>4h</td>
<td></td>
</tr>
<tr>
<td>Electric machines in electric mobility</td>
<td>12h</td>
<td>6h</td>
<td>6h</td>
</tr>
<tr>
<td>Power converters</td>
<td>6h</td>
<td>4h</td>
<td>2h</td>
</tr>
<tr>
<td>Applications</td>
<td>4h</td>
<td>4h</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td>11h</td>
<td>4h</td>
<td>7h</td>
</tr>
<tr>
<td>Electric vehicles and the environment</td>
<td>4h</td>
<td>4h</td>
<td></td>
</tr>
</tbody>
</table>
820148 - EMO - Electric Mobility

Qualification system

Final exam 50 %
Non-presential activities 40 %
Lab practices 10 %

Bibliography

Basic:

