

# Course guide 820530 - QAQ - Analytical Chemistry

**Last modified:** 14/06/2023

Unit in charge: Barcelona East School of Engineering

**Teaching unit:** 713 - EQ - Department of Chemical Engineering.

Degree: BACHELOR'S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish

### **LECTURER**

Coordinating lecturer: ANTONIO FLORIDO PEREZ

**Others:** Primer quadrimestre:

ANTONIO FLORIDO PEREZ - Grup: M2 ORIOL GIBERT AGULLO - Grup: M2

Segon quadrimestre:

JOAN DE PABLO RIBAS - Grup: T20 ORIOL GIBERT AGULLO - Grup: T20

## **PRIOR SKILLS**

Chemistry

Aqueous solution chemistry

# **REQUIREMENTS**

QUÍMICA EN DISSOLUCIÓ AQUOSA - Prerequisit

### **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

### Specific:

CEQUI-19. Understand mass and energy balances, biotechnology, mass transfer, separation operations, chemical reaction engineering, the design of reactors, and the recovery and processing of raw materials and energy resources.

### Transversal:

07 AAT N2. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.

05 TEQ N1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

# **TEACHING METHODOLOGY**

The methodology consists on theoretic lessons where the teacher presents the learning objectives in relation to the contents of the subject. The contents are subsequently applied to solve practical problems. In these practical problems students are encouraged to actively participate. Real cases related to both industry and environment are also developed in order to learn choosing the adequate analytical techniques.

The adequate material and tools for the learning process are available for the students. The Digital Campus is also a web tool that is being used in order to give the students different material of the subject and in addition it is a tool to improve the communication between teachers and students.

Date: 28/07/2023 Page: 1 / 4



# **LEARNING OBJECTIVES OF THE SUBJECT**

The global objective of Analytical Chemistry is the students to learn the basic principles and applications (industrial and environmental) of the analytical chemistry, including classic and instrumental techniques.

At the end of the lessons, the students should be capable to:

- 1) Describe the scientific basis and most important applications of classic and instrumental techniques in analytical chemistry.
- 2) Distinguish the chemical needed pre-treatment of a sample before using any analytical technique.
- 3) Determine the concentration of any analyt in a sample by using titrating techniques.
- 4) Select the adequate analytical technique for the determination of the concentration of a solute in a sample.
- 5) Transform the signal of any instrumental technique in concentration units.

## **STUDY LOAD**

| Туре              | Hours | Percentage |
|-------------------|-------|------------|
| Hours large group | 60,0  | 40.00      |
| Self study        | 90,0  | 60.00      |

Total learning time: 150 h

### **CONTENTS**

## -Tema 1. INTRODUCTION TO ANALYTICAL CHEMISTRY

#### Description:

Objectives of the analytical chemistry. Qualitative and quantitative analysis. Analytical methodologies (off-line, atline, in-line, at-time). The analytical problem. Chemical analytical reactions. Selectivity and sensibility. The samples and their pre-treatment. Avoiding interferences. Separation techniques. Evaluation of the analytical data and errors.

Full-or-part-time: 18h Theory classes: 8h Self study: 10h

# -Tema 2. CLASSIC METHODS IN ANALYTICAL CHEMISTRY

# **Description:**

- Introduction to titrations. Chemical reactions useful in titrations. Direct titrations and back titrations. Standard solutions. Determination of the equivalence point. Errors.
- Acid-base titrations: acidimetry and alkalimetry. Titrants. Primary Standard solutions. Titration curves. Titration of mixtures. Indicators. Errors.
- Complexometric titrations: Titration curves. Titrants, metalochromic indicators.
- Precipitation titrations: Titration curves, titrants and indicators.
- Redox titrations: Titration curves, redox titrants and indicators. Pre-treatment of the sample. Titrations with strong oxidants (permanganate and dichromate) and with strong reductants. Redox titrations with iodine.
- Industrial and environmental applications of titrations.

**Full-or-part-time:** 56h Theory classes: 20h Self study : 36h



### -Tema 3. ELECTRONANALYTICAL METHODS

### **Description:**

- Classification of electroanalytical techniques.
- Potentiometry: fundamentals. Types of electrodes. Instrumentation. Potentiometric titrations.
- Conductimetry: fundamentals, instrumentation and conductimetric titrations.
- Industrial and environmental applications of electroanalytical methods.

**Full-or-part-time:** 25h Theory classes: 10h Self study: 15h

## -Tema 4. SPECTROSCOPIC METHODS

### **Description:**

- Absorption and emission of light. Classification of the spectroscopic methods.
- Mollecular Absorption Spectroscopy UV-vis. Fundamental and instrumentation. Radiation sources, optics system and detectors. Qualitative and quantitative analysis. Lambert-Beer Law. Titrations.
- Atomic Absorption Spectroscopy. Fundamental and instrumentation. Atomization (fundamentals and techniques). Quantitative analysis.
- Fluorescence. Fundamentals and instrumentation. Qualitative and quantitative analysis
- Atomic emission. Fundamentals and instrumentation. The plasma. Quantitative analysis.
- Industrial and environmental applications of spectroscopic methods.

**Full-or-part-time:** 27h Theory classes: 12h Self study: 15h

## -Tema 5. CHROMATOGRAPHY

### **Description:**

- Fundamentals. Parameters of the columns. Classification.
- Gas-chromatography (GC). Instrumentation.
- Liquid-chromatography (HPLC). Instrumentation.
- Qualitative and quantitative analysis. Industrial and environmental applications.

Full-or-part-time: 24h Theory classes: 10h Self study: 14h

### **GRADING SYSTEM**

Assessment qualification (NF):

NF = 0.20\*EP1 + 0.20\*EP2 + 0.30\*EF1 + 0.3\*EF2

where

1) EP1: Exam 1 2) EP2: Exam 2

3) EF1 and EF2: Final Exams

This subject has a re-evaluation test and the EEBE regulations will be applied. The students will be able to access the re-assessment test that meets the requirements set by the EEBE in its Assessment and Permanence Regulations (https://eebe.upc.edu/ca/estudis/normatives-academiques/documents/eebe-normativa-avaluacio-i-permanencia-18-19-aprovat-je-20 18-06-13.pdf)



# **BIBLIOGRAPHY**

### Basic:

- Christian, Gary D. Química analítica [on line]. 6ª ed. México [etc.]: McGraw-Hill, 2009 [Consultation: 29/04/2020]. Available on: <a href="http://www.ingebook.com/ib/NPcd/IB">http://www.ingebook.com/ib/NPcd/IB</a> BooksVis?cod primaria=1000187&codigo libro=4367. ISBN 9781456219901.
- Skoog, Douglas A. Fundamentos de química analítica. 8ª ed. Madrid, [etc.]: Thomson, cop. 2005. ISBN 8497323335.
- Harris, Daniel C. [et al.]. Anàlisi química quantitativa [on line]. Barcelona: Reverté, 2006 [Consultation: 04/03/2021]. Available on: <a href="http://www.ingebook.com/ib/NPcd/IB">http://www.ingebook.com/ib/NPcd/IB</a> BooksVis?cod primaria=1000187&codigo libro=6541. ISBN 8429172238.

### **Complementary:**

- Skoog, Douglas A; Holler, F. James; Crouch, Stanley R. Principios de análisis instrumental. 6a ed. México: Cengage Learning, 2008. ISBN 9789706868299.
- Alegret, Salvador. Integrated analytical systems. Amsterdam [etc.]: Elsevier, 2003. ISBN 0444510370.
- Harris, Daniel C. Exploring chemical analysis. 2nd ed. New York: Freeman and Company, cop. 2001. ISBN 0716735407.
- Kellner, Robert A. Analytical chemistry: the approved text to the FECS curriculum analytical chemistry. Weinheim [etc.]: Wiley-VCH, 1998. ISBN 3527288813.

# **RESOURCES**

### Other resources:

The professors provide some support notes to the students as a study aid. Thus, the contents of these notes is:

- A collection of problems of each topic.
- Tables, graphs and figures.
- Articles, interesting Web pages, solved past papers, etc.

Furthermore, additional information about activity dates or examination grades are also given.