

Guía docente 820731 - ESEC - El Sistema Eléctrico

Última modificación: 16/07/2025

Unidad responsable: Escuela Técnica Superior de Ingeniería Industrial de Barcelona

Unidad que imparte: 709 - DEE - Departamento de Ingeniería Eléctrica.

748 - FIS - Departamento de Física.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE LA ENERGÍA (Plan 2013). (Asignatura obligatoria).

MÁSTER UNIVERSITARIO EN SISTEMAS Y ACCIONAMIENTOS ELÉCTRICOS (Plan 2021). (Asignatura

obligatoria).

MÁSTER UNIVERSITARIO EN INGENIERÍA DE LA ENERGÍA (Plan 2022). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 5.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Freixa Terradas, Jordi

Otros: Villafáfila Robles, Roberto

Freixa Terradas, Jordi

REQUISITOS

Se necesitan conocimientos básicos de termodinámica, sistemas eléctricos y transferencia de calor.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMT-2. Identificar y describir los diferentes componentes del sistema eléctrico (producción, transporte, distribución, mercados, contratación y consumo) y evaluar las soluciones tecnológicas utilizadas en la producción de electricidad.

METODOLOGÍAS DOCENTES

Sesiones expositivas Sesiones de trabajo dirigido

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Presentar las diferentes tecnologías implicadas en la producción de energía eléctrica mediante el uso de procesos térmicos, haciendo particular énfasis en las características fundamentales, el impacto ambiental y las eficiencias de cada una de ellas. Abordar los aspectos más significativos del transporte y la distribución de electricidad.

Aplicar lo aprendido a la resolución de casos prácticos.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	45,0	36.00
Horas aprendizaje autónomo	80,0	64.00

Dedicación total: 125 h

Fecha: 07/09/2025 Página: 1 / 3

CONTENIDOS

Tema 1: Introducción

Descripción:

Este primer tema describe las características de la estructura del sector eléctrico mundial, tanto en relación a la demanda como a la producción.

Objetivos específicos:

Dar al estudiante una visión general del sector eléctrico.

Dedicación: 3h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 1h

Tema 2: Producción de energía eléctrica mediante procesos térmicos

Descripción:

Este curso ofrece una visión completa de la producción de energía eléctrica a través de diversos procesos térmicos. Los estudiantes explorarán los principios fundamentales y las tecnologías detrás de la conversión de energía térmica en energía eléctrica. El curso abarca temas clave como la termodinámica de los ciclos de potencia, incluyendo los ciclos de Rankine y Brayton, que son la base de las plantas de energía de turbina de vapor y de gas, respectivamente.

Los temas avanzados incluyen plantas de ciclo combinado, cogeneración y tecnologías emergentes como la energía solar concentrada (CSP) y la conversión de energía a partir de biomasa.

Al finalizar el curso, los estudiantes tendrán con el conocimiento para analizar críticamente diferentes métodos de producción de energía térmica y sus aplicaciones.

Actividades vinculadas:

Resolución de casos prácticos

Dedicación: 35h

Grupo grande/Teoría: 14h Actividades dirigidas: 7h Aprendizaje autónomo: 14h

Tema 3: Transporte y distribución

Descripción:

Descripción de las características principales de las infraestructuras de transporte y distribución (línias de transmisión, subestaciones transformadoras, estaciones de conversión)

Análisis de los aspectos tecnológicos de la regulación de la red.

Objetivos específicos:

Que los estudiantes conozcan las diferencias entre transporte y distribución.

Que conozcan las causas que originan las pérdidas de energía elèctrica en su transporte y distribución y puedan razonar sobre longitudes máximas de la red.

Que conozcan las características principales de las infraestructuras de transporte y distribución.

Actividades vinculadas:

Cálculo de líneas.

Resolución de casos prácticos.

Dedicación: 26h

Grupo grande/Teoría: 10h Actividades dirigidas: 6h Aprendizaje autónomo: 10h

Fecha: 07/09/2025 Página: 2 / 3

SISTEMA DE CALIFICACIÓN

CF = 0.4* CT + 0.6* CE (si CE >= 4)

CF = CE (si CE < 4)

CF: Calificación final

CT: Calificación del trabajo en grupo CE: Calificación del examen final

En caso de no alcanzar la calificación de CF=5.0, los alumnos tendrán una prueba de recuperación que sustituirá la nota CE. Asimismo, si la nota CT ha sido inferior a 5.0, los alumnos podrán mejorar el trabajo con el fin de alcanzar una nota de CT=5.0.

BIBLIOGRAFÍA

Básica:

- Çengel, Yunus A; Boles, Michael A; Kanoglu, Mehmet. Thermodynamics: an engineering approach. 10th ed. New York: McGraw Hill, 2023. ISBN 9781266152115.

Fecha: 07/09/2025 **Página:** 3 / 3