

Course guide 330130 - ETE - Thermal Engineering

Last modified: 04/05/2023

Unit in charge: Manresa School of Engineering

Teaching unit: 750 - EMIT - Department of Mining, Industrial and ICT Engineering.

Degree: BACHELOR'S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Pérez Ràfols, Francisco

Others: Cobo Molina, Raül

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Understanding the problems of energy and its transformation. Understanding and mastery of the fundamental concepts of thermal machines.

Transversal:

- 2. SELF-DIRECTED LEARNING Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
- 3. EFFICIENT ORAL AND WRITTEN COMMUNICATION Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

TEACHING METHODOLOGY

The course consists of two hours of theory a week in face-to-face classes (large groups), with lectures with audiovisual support, and two hours a week in small groups dedicated to laboratory practices and application problems.

LEARNING OBJECTIVES OF THE SUBJECT

- -At the end of the course the student must be able to:
- Know, understand the problem of energy and its transformation.
- Understand and apply the technologies of direct exothermic heat engines.
- Understand and apply the technologies of direct endothermic heat engines.
- Understand and apply the technologies of reverse heat engines.
- Prepare technical reports and resolution of technical application problems.

STUDY LOAD

Туре	Hours	Percentage
Hours large group	30,0	20.00
Hours small group	30,0	20.00
Self study	90,0	60.00

Total learning time: 150 h

Date: 27/07/2023 **Page:** 1 / 5

CONTENTS

Title of content 1: Energy and the problems of its transformation: thermal machines heat engines

Description:

Demand and supply of energy. Energy intensity. Primary energy sources. Transformation to useful or final energy. Transformation technologies and transformation performance. Heat engines and maximum transformation performance. Environmental impacts.

Specific objectives:

Know, understand the problem of energy and its transformation.

Related activities:

Continuous assessment test (Deliverable 0 and Deliverable 1).

Specific test (First Partial).

Full-or-part-time: 15h Theory classes: 3h Laboratory classes: 3h

Self study: 9h

Content Title 2: Direct Exothermic Heat Engines

Description:

Thermal power stations. Nuclear power plants. Open cycle gas turbines. Heat exchangers.

Specific objectives:

Understanding, analysis and application of the technologies of thermal, nuclear and open cycle turbines. Understanding, analysis and application of the principles of operation of heat exchangers.

Related activities:

Continuous assessment test (Deliverable 2a, 2b, 2c and 2d).

Specific test (First Partial).

Full-or-part-time: 45h Theory classes: 9h Laboratory classes: 9h Self study: 27h

Content Title 3: Endothermic Direct Heat Engines

Description:

Diesel engines. Otto engines. Sabathè engines.

Specific objectives:

Understanding, analysis and application of the operating principles and technology of endothermic engines.

Related activities:

Continuous assessment test (Deliverable 3a and 3b).

Final evaluation test (Second Part).

Full-or-part-time: 45h Theory classes: 9h Laboratory classes: 9h Self study: 27h

Content Title 4: Reverse Heat Engines

Description:

Refrigeration and air conditioning. Compression refrigeration machines (one stage and multistage). Refrigerating machines without compression.

Specific objectives:

Understanding and application of refrigeration and air conditioning technologies.

Related activities:

Continuous assessment test (Deliverable 4).

Final evaluation test (Second Part).

Laboratory practices (Laboratory Report).

Full-or-part-time: 45h Theory classes: 9h Laboratory classes: 9h Self study: 27h

ACTIVITIES

TITLE OF ACTIVITY 1: LABORATORY PRACTICES (Laboratory Report)

Description:

Carrying out practices in the laboratory related to the subject of refrigeration machines.

Specific objectives:

Development of reasoning techniques and strategies for the analysis and resolution of problems.

Preparation of a report with the results obtained experimentally.

Written communication.

Autonomous Learning.

Material:

Statements and practical scripts in the digital Campus.

Delivery:

10% of the final grade.

Full-or-part-time: 10h 20m Laboratory classes: 2h Self study: 8h 20m

TITLE OF ACTIVITY 2: CONTINUOUS ASSESSMENT TEST (Deliverables 0, 1, 2a, 2b, 2c, 2d, 3a, 3b and 4)

Description:

Carrying out one or more problems for each of the topics seen.

Specific objectives:

Autonomous Learning.

Material:

Problems in the digital Campus.

Delivery:

10% of the final grade.

Full-or-part-time: 20h

Self study: 20h

Date: 27/07/2023 **Page:** 3 / 5

TITLE OF ACTIVITY 3: SPECIFIC TEST PROBLEMS (First Partial)

Description:

Taking a written problem-solving test.

Specific objectives:

Upon completion of the activity, the student should be able to: Understand the fundamentals of direct exothermic heat engines.

Material:

Statements problems and calculator.

Delivery:

40% of the final grade.

Full-or-part-time: 32h Theory classes: 2h Self study: 30h

TITLE OF ACTIVITY 4: FINAL EVALUATION TEST (Second Part)

Description:

Taking a written problem-solving test.

Specific objectives:

Upon completion of the activity, the student should be able to:

Understand the fundamentals of reverse heat engines and direct endothermic machines.

Material:

Statements problems and calculator.

Delivery:

40% of the final grade.

Full-or-part-time: 32h Laboratory classes: 2h Self study: 30h

GRADING SYSTEM

Deliverables: 10% of the final grade.

Laboratory practices: 10% of the final grade.

First Partial: 40% of the final grade. Second Partial: 40% of the final grade.

EXAMINATION RULES.

Activities not submitted will be considered a "0".

Date: 27/07/2023 **Page:** 4 / 5

BIBLIOGRAPHY

Basic:

- Moran, Michael J; Shapiro, Howard N. Fundamentos de termodinámica técnica [on line]. 2ª ed. Barcelona [etc.]: Reverté, cop. 2004 [Consultation: 10/06/2022]. Available on: https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?docID=5635437. ISBN 8429143130.

- Agüera, J. Termodinámica lógica y motores térmicos. 6a ed. Madrid: Ciencia 3, 1999. ISBN 8486204984.

Complementary:

- Rolle, K.C. Termodinámica [on line]. 6a ed. Mèxico: Pearson Educación, 2006 [Consultation: 03/06/2022]. Available on: https://www-ingebook-com.recursos.biblioteca.upc.edu/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=4691. ISBN 9702607574.
- Carrera, C.; Comas, A.; Calvo, A. Motores de combustión interna: fundamentos. Barcelona: Edicions UPC, 1993. ISBN 8476533543.

RESOURCES

Other resources:

Non-tabulated resources: Notes on digital campuses. Audiovisual material: Presentations on the digital campus.

Date: 27/07/2023 **Page:** 5 / 5