

Course guide 330534 - DV - Vehicle Dynamics

Last modified: 04/05/2023

Unit in charge: Manresa School of Engineering

Teaching unit: 712 - EM - Department of Mechanical Engineering.

Degree: BACHELOR'S DEGREE IN AUTOMOTIVE ENGINEERING (Syllabus 2017). (Compulsory subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: Català Calderón, Pau

Others: Peña Pitarch, Esteban

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Vehicle kinematics. Dynamics of conventional wheels. Vehicle dynamics without suspensions. Steering system. Suspension system. Braking system. Vibration analysis.

Generical:

CG11. Ability to write and develop projects for vehicles and/or their components.

Transversal:

2. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

04 COE N3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

05 TEQ N3. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

TEACHING METHODOLOGY

- Master class or conference.
- Problem solving and case study.
- Project, activity or work of reduced scope.
- Project or work of wide scope.
- Evaluation activities.

LEARNING OBJECTIVES OF THE SUBJECT

At the end of the course, students must be able to:

- To apply correctly the fundamental concepts of the statics, kinematics and dynamics of the rigid solid and to be able to apply them to practical cases of automotive engineering.
- Know the different auxiliary mechanisms of a vehicle, as well as be able to carry out its design.
- Apply the basic concepts of the kinematics and dynamics of a vehicle and be able to apply them to practical cases in automotive engineering.

STUDY LOAD

Туре	Hours	Percentage
Hours small group	30,0	20.00
Self study	90,0	60.00
Hours large group	30,0	20.00

Total learning time: 150 h

CONTENTS

1. Introduction to vehicle dynamics

Description:

General characteristics of a motor vehicle. Classification of motor vehicles. Vehicle dynamics specific terminology. Introduction to vehicle dynamics.

Related activities:

PROB, SIM, PAR, EP1, EFINAL

Full-or-part-time: 20h Theory classes: 4h Practical classes: 4h Self study: 12h

2. Wheel dynamics. Tires

Description:

Wheels. Tires. Covers or tires. Dynamic tire behavior. Efforts in the footprint. Properties of the tire in the turn. Numerical models of ground tire interaction.

Related activities:

PROB, SIM, PAR, EP1, EFINAL

Full-or-part-time: 10h Theory classes: 2h Practical classes: 2h Self study: 6h

3. Longitudinal dynamics

Description:

 ${\it Maximum\ acceleration.}\ Engine\ power.\ {\it Maximum\ acceleration.}\ Tractor\ capacity\ driving\ wheels.$

Related activities:

PROB, SIM, PAR, EP1, EFINAL

Full-or-part-time: 40h Theory classes: 8h Practical classes: 8h Self study: 24h

4. Braking performance

Description:

Fundamental braking equation. Analysis of braking performance. Braking performance. Brake load transfer. Anti-lock braking systems (ABS).

Related activities:

PROB, SIM, PAR, EP2, EFINAL

Full-or-part-time: 20h Theory classes: 4h Practical classes: 4h Self study: 12h

5. The steering system

Description:

Kinematics of direction. Four-wheel steering system. Vehicle with trailer. Vehicles with more than two axles. Mechanisms for steering systems. High speed turns.

Related activities:

PROB, SIM, PAR, EP2, EFINAL

Full-or-part-time: 32h Theory classes: 6h Practical classes: 6h Self study: 20h

6. Suspension system

Description:

Suspension system. Roll Centers and roll axis. Study of the rolling motion of a vehicle.

Related activities:

PROB, SIM, PAR, EP2, EFINAL

Full-or-part-time: 20h Theory classes: 4h Practical classes: 4h Self study: 12h

7. Vibration analysis

Description:

Introduction to vibrations. Vehicle response properties in a vertical motion. Perception of ride.

Full-or-part-time: 8h Theory classes: 2h Practical classes: 2h Self study: 4h

Date: 28/07/2023 **Page:** 3 / 6

ACTIVITIES

Partial Exam 1

Description:

Assessment of acquired knowledge

Delivery:

Delivered exam

Full-or-part-time: 44h Theory classes: 2h Self study: 42h

Partial Exam 2

Description:

Assessment of acquired knowledge

Delivery:

Delivered exam.

Full-or-part-time: 50h Theory classes: 2h Self study: 48h

Final Exam

Description:

Assessment of acquired knowledge.

Delivery:

Delivered exam.

Full-or-part-time: 93h Theory classes: 3h Self study: 90h

Problems delivery

Description:

Delivery of technical reports explaining the resolution of problems related to real cars.

Delivery:

Technical report.

Full-or-part-time: 16h Guided activities: 16h

Date: 28/07/2023 **Page:** 4 / 6

Simulation Report

Description:

Delivery of a technical report explaining the results obtained by using an MBD simulation software of a complete vehicle and some of its mechanical subsystems. These simulated results must be contrasted with analytical values obtained through the theoretical content presented in the subject.

Delivery:

Technical report and simulation files.

Full-or-part-time: 26h Practical classes: 10h Self study: 16h

Class participation

Description:

attendance and participation in class and laboratories. Online tests can be proposed to be solved by the students of the content explained in class.

Delivery:

Class participation and tests

Full-or-part-time: 1h Theory classes: 1h

GRADING SYSTEM

- PROB: Delivery of proposed problems (10%).
- SIM: Simulation report (15%).
- PAR: Class attendance and participation (5%).
- EP1: Partial exam 1 (35%).
- EP2: Partial exam 2 (35%).
- FINAL: Recovery exam (70%).

The final grade (NFINAL), rounded to the tenth, will be the next weighted average.

 $\mathsf{NFINAL} = \mathsf{max} \; (70\% \cdot \mathsf{EFINAL}, \, 35\% \cdot \mathsf{EP1} \, + \, 35\% \cdot \mathsf{EP2}) \, + \, 10\% \cdot \mathsf{PROB} \, + \, 15\% \cdot \mathsf{SIM} \, + \, 5\% \cdot \mathsf{PAR}.$

Students who fail to pass the subject in part (EP1, EP2) or those who want to improve their qualification, they will have a second chance with a new final test (EFINAL).

EXAMINATION RULES.

- Late deliveries will not be accepted (SIM, PROB). Deliveries must be made via the ATENEA campus.
- In the delivery any total or partial copy of solutions will suppose the suspension to the activity. The student must ensure the privacy and security of their data.
- The structure and rules of the exams of the subject (EP1, EP2, EFINAL) are the following:

Duration: 2 h - 3 h

Part of theory (3 points). Test questions and open-ended questions. No form or notes.

Part of problems (7 points). Between one and three problems. With form and / or notes.

Date: 28/07/2023 **Page:** 5 / 6

ost-live&ebv=EB&ppid=pp Cover. ISBN 1560911999.

BIBLIOGRAPHY

Basic:

- Jazar, Reza N. Vehicle dynamics: theory and applications [on line]. 2n edition. New York: Springer, 2017 [Consultation: 19/11/2020]. Available on: http://dx.doi.org/10.1007/978-1-4614-8544-5. ISBN 9780387742434.
- Gillespie, T. D. Fundamentals of vehicle dynamics [on line]. 4th ed. Warrendale, PA: Society of Automotive Engineers, cop. 1992 [Consultation: 28/07/2022]. Available on: https://search-ebscohost-com.recursos.biblioteca.upc.edu/login.aspx?direct=true&AuthType=ip,uid&db=nlebk&AN=3040054&site=eh
- Font Mezquita, J.; Dols, J. F. Tratado sobre automóviles. Tomo I y II, Tecnología del automóvil. València: Universitat Politécnica de Valencia, 2004. ISBN 9788477215011.
- Font Mezquita, J.; Dols, J. F. Tratado sobre automóviles. Tomo III, el entorno del automóvil. Valencia: Universidad Politécnica de Valencia, 1997-2006. ISBN 8477215014.
- Luque, P.; Álvarez, D.; Vera, C. Ingeniería del automóvil: sistemas y comportamiento dinámico. Madrid: Paraninfo, 2004. ISBN 9788497322829.
- Font Mezquita, J.; Dols, J. F. Tratado sobre automóviles. Tomo IV, La dinámica del automóvil. València: Universitat Politécnica de Valencia, 2006. ISBN 8483630206.

RESOURCES

Other resources:

Class presentations and MBD simulation software with specific toolkits for vehicle dynamics.