

Guía docente 820030 - SCSB - Sensores y Acondicionadores de Señal

Última modificación: 07/07/2025

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 710 - EEL - Departamento de Ingeniería Electrónica.

Titulación: GRADO EN INGENIERÍA BIOMÉDICA (Plan 2009). (Asignatura obligatoria).

Curso: 2025 Créditos ECTS: 6.0 Idiomas: Catalán, Castellano

PROFESORADO

Profesorado responsable: LEXA DIGNA NESCOLARDE SELVA

Otros: Primer quadrimestre:

GEORGINA COMPANY SE - Grup: M14, Grup: M15

LEXA DIGNA NESCOLARDE SELVA - Grup: M11, Grup: M12, Grup: M13, Grup: M14, Grup:

M15

VESCIO GIOVANNI

CAPACIDADES PREVIAS

Haber superado la asignatura de Sistemas Electrónicos.

REQUISITOS

PROCESSAMENT DE SENYALS BIOMÈDICS - Irequisit SISTEMES ELECTRÒNICS - Prerequisit

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

1. identificar, entender y utilizar los principios de sensores, acondicionadores y sistemas de adquisición de señales biomédicas.

Transversales:

2. TRABAJO EN EQUIPO - Nivel 2: Contribuir a consolidar el equipo planificando objetivos, trabajando con eficacia y favoreciendo la comunicación, la distribución de tareas y la cohesión.

METODOLOGÍAS DOCENTES

Clases expositivas, actividades de trabajo cooperativo, aprendizaje autónomo, aprendizaje basado en proyectos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Conocer los principios de los sensores utilizados en aplicaciones biomédicas. Capacidad para entender y utilizar los circuitos de acondicionamiento y los sistemas de adquisición de señal adecuados para los distintos sensores de señales biomédicas.

Fecha: 09/07/2025 **Página:** 1 / 6

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	45,0	30.00
Horas grupo pequeño	15,0	10.00

Dedicación total: 150 h

CONTENIDOS

Tema 1. Introducción a los sistemas de adquisición de señales biomédicas

Descripción

- 1.1 Estructura de los sistemas de medida y adquisición de señales biomédicas. Tipos de Sensores. Clasificación de los sensores. Consideraciones de seguridad.
- 1.2 Configuración general entrada-salida. Interferencias y perturbaciones internas. Técnicas de compensación.
- 1.3 Características estáticas de los sistemas de medidas: Exactitud, fidelidad, sensibilidad. Linealidad, resolución. Errores sistemáticos. Errores aleatorios.
- 1.4 Características dinámicas de los sistemas de medida: Sistemas de medida de orden cero. Sistemas de medida de primer orden. Sistemas de medida de segundo orden.
- 1.5 Característica de entrada: impedancia

Objetivos específicos:

- 1. El estudiante será capaz de explicar e identificar los conceptos relacionados con todas las características estáticas y dinámicas de los sensores en general.
- 2. El estudiante será capaz de explicar la estructura de un sistema de adquisición de señales biomédicas y de identificar y clasificar los diferentes sensores que se utilizan y sus características genéricas.

Actividades vinculadas:

- 1. Resolución de problemas sobre características de sensores.
- 2. Práctica de caracterización estática de sensores.

Dedicación: 8h

Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 2h

Fecha: 09/07/2025 **Página:** 2 / 6

Tema 2. Sensores y acondicionadores de señal

Descripción:

- 2.1 Sensores resistivos. Circuitos de acondicionamiento de señal: Medida de resistencia. Divisores de tensión y corriente. Puente de Wheastone: Medidas por comparación y por deflexión. Amplificadores de Instrumentación. Interferencias.
- 2.2 Sensores de reactancia variable y electromagnéticos. Circuitos de acondicionamiento de señal: Puentes y amplificadores de alterna. Amplificadores de portadora y detección coherente. Acondicionamiento específico para sensores capacitivos. Convertidores A/D y D/A.
- 2.3 Sensores generadores. Circuitos de acondicionamiento de señal: Amplificadores con bajas derivas. Amplificadores electrométricos. Amplificadores de carga. Ruido en amplificadores. Derivas y ruido en resistencias.
- 2.4 Otros métodos de detección: Sensores basados en uniones semiconductoras. Sensores basados en ultrasonidos. Sensores basados en fibras ópticas. Biosensores.

Objetivos específicos:

- 1. El estudiante será capaz de describir los principios de funcionamiento de los sensores utilizados en equipos de adquisición de señales biomédicas, su modelo eléctrico y sus ventajas y limitaciones.
- 2. El estudiante será capaz de analizar los circuitos de acondicionamiento asociados a los sensores, seleccionar los más adecuados y llevar a cabo diseños básicos.

Actividades vinculadas:

- 1. Realización de problemas sobre los diferentes tipos de circuitos de acondicionamiento.
- 2. Realización de problemas sobre sistemas de adquisición.
- 3. Práctica de laboratorio relacionada con medidas con puente de resistencias y amplificador diferencial.
- 4. Práctica de laboratorio relacionada con circuito de acondicionamiento para sensor piezoeléctrico.

Dedicación: 30h Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 19h

Tema 3. Sensores biomédicos

Descripción:

- 3.1 Conceptos fundamentales. Señal y ruido en las medidas. Características de los sistemas de medida. Determinación de los valores absolutos. Sistemas de unidades de medida.
- 3.2 Medidas de presión. Unidades de presión y requerimientos para medidas de presión. Medidas de presión directas e indirectas.
- 3.3 Medidas de flujo. Unidades de flujo y requerimientos para medidas de flujo y rango. Medidas del flujo sanguíneo en vasos individuales. Medidas del flujo sanguíneo tisular. Medidas de flujo de gas respiratorio.
- 3.4 Medidas de movimiento y fuerza. Objetivo y unidades de medida. Métodos de medida.
- 3.5 Medidas bioeléctricas y biomagnéticas. Unidades y requerimientos para medidas bioeléctricas y biomagnéticas. Teoría de electrodo. Potencial de electrodo de superficie. Microelectrodo. Biomagnetismo.

Objetivos específicos:

1. El estudiante será capaz de identificar los componentes de un sistema de adquisición de datos para aplicaciones biomédicas y sus funciones, de configurarlo, analizarlo y llevar a cabo diseños básicos.

Actividades vinculadas:

- 1. Realización de problemas sobre los diferentes tipos de circuitos de acondicionamiento.
- 2. Realización de problemas sobre sistemas de adquisición.
- 3. Práctica de laboratorio relacionada con circuito de acondicionamiento para sensor piezoeléctrico.
- 4. Configuración de un sistema de adquisición para el proyecto de medida no invasiva de la presión arterial.
- 5. Diseño e implementación de los circuitos de acondicionamiento para el proyecto de medida no invasiva de la presión arterial.

Dedicación: 88h 20m Grupo grande/Teoría: 28h Grupo pequeño/Laboratorio: 7h Aprendizaje autónomo: 53h 20m

Proyecto: Implementación de un sistema de medida para monitorizar señales biomédicas con Biopac.

Descripción:

Proyecto de diseño e implementación de un circuito de acondicionamiento para la medida no invasiva de la presión arterial basado en el uso de sensores, circuitos de acondicionamiento y un sistema de adquisición con Biopac.

Objetivos específicos:

- 1. Desarrollar competencias para el trabajo en equipo.
- 2. El estudiante será capaz de realizar el diseño e implementación de sistemas de medida y adquisición de señales biomédicas.

Actividades vinculadas:

En combinación con la asignatura de procesado de señales biomédicas, realización de un proyecto en el que se diseña un sistema de medida no invasiva de la presión arterial:

- 1. Selección de los sensores y diseño e implementación de los circuitos de acondicionamiento (se integran las prácticas que se realizan a la asignatura y que son subsistemas del sistema global).
- 2. Configuración y programación del sistema de adquisición.
- 3. Procesado de las señales y obtención de los estimadores de los parámetros de la presión arterial.

Dedicación: 23h 40m Grupo grande/Teoría: 4h Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 15h 40m

ACTIVIDADES

Proyecto.S1- CONFIGURACIÓN DE UN SISTEMA DE ADQUISICIÓN

Descripción:

Práctica de configuración de un sistema de adquisición de señales biomédicas con Biopac.

Objetivos específicos:

1. Ser capaz de explicar las características de un sistema de adquisición y de configurar sus parámetros para una aplicación determinada.

Material:

Sistema Biopac disponible en el laboratorio.

Entregable:

Informe con los resultados y el análisis de las medidas.

Dedicación: 4h

Grupo pequeño/Laboratorio: 2h Aprendizaje autónomo: 2h

Fecha: 09/07/2025 Página: 4 / 6

Proyecto.S2- SISTEMA DE MEDIDA DE LA PRESIÓN ARTERIAL Y DE ECG

Descripción:

Proyecto de diseño de un sistema de medida no invasiva de la presión arterial y ECG basado en el uso de sensores, circuitos de acondicionamiento y un sistema de adquisición, integrando los circuitos de las prácticas anteriores y complementándolo con el procesado de señal necesaria para la obtención de los estimadores de la presión arterial.

Objetivos específicos:

- 1. Desarrollar competencias para el trabajo en equipo.
- 2. Ser capaz de integrar circuitos al diseño y añadir al proyecto el procesado de señal necesaria para la obtención de los estimadores de la presión arterial.

Material:

Circuitos y sistema de adquisición disponibles en el laboratorio.

Entregable:

Plan de trabajo e informe final.

Dedicación: 19h 40m

Aprendizaje autónomo: 15h 40m Grupo pequeño/Laboratorio: 4h

Práctica 1- SENSOR DE PRESIÓN: CARACTERIZACIÓN, AMPLIFICACIÓN Y AJUSTE DE LA RESPUESTA

Descripción:

Práctica de diseño y caracterización de un circuito de acondicionamiento para un sensor de presión con configuración de puente resistivo.

Objetivos específicos:

- 1. Ser capaz de explicar el acoplamiento entre sensores con salida diferencial y amplificadores diferenciales.
- 2. De diseñar estructuras básicas de amplificadores diferenciales y de obtener sus características.

Material:

Kit disponible en el laboratorio.

Entregable:

Cálculos previos, informe sobre las medidas y su análisis.

Dedicación: 7h

Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 3h

Fecha: 09/07/2025 **Página:** 5 / 6

Práctica 2- SENSOR PIEZOELÉCTRICO: ACONDICIONAMIENTO DE UN SENSOR PIEZOELÉCTRICO Y AMPLIFICADOR DE CARGA

Descripción:

Práctica en la que se diseña un circuito de acondicionamiento para un sensor piezoeléctrico y se determinan sus características.

Objetivos específicos:

1. Ser capaz de explicar el amplificador de carga utilizado (SLOA033A), de diseñar sus parámetros y de determinar sus características.

Material:

Kit disponible en el laboratorio.

Entregable:

Cálculos previos, informe con las medidas y su análisis.

Dedicación: 6h

Grupo pequeño/Laboratorio: 4h Aprendizaje autónomo: 2h

SISTEMA DE CALIFICACIÓN

Control a mitad de curso: 25% Prácticas de laboratorio: 20%

Proyecto: 20% Examen final: 35%

* Esta asignatura no tiene re-evaluación.

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

La entrega fuera de plazo o la no entrega de los encargos individuales (trabajo cooperativo a clase y Proyecto) penalizan la nota global.

La realización de las prácticas y el proyecto es condición necesaria para aprobar la asignatura.

BIBLIOGRAFÍA

Básica:

- Togawa, Tatsuo; Tamura, Toshiyo; Öberg, P. Ake. Biomedical sensors and instruments [en línea]. 2a ed. Boca Raton: CRC Press, cop. 2011 [Consulta: 11/06/2020]. Disponible a:

 $\underline{https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=729635}.~ISBN~9781420090789.$

- Pallás Areny, Ramón. Sensores y acondicionadores de señal. 4ª ed. Barcelona [etc.]: Marcombo Boixareu, cop. 2003. ISBN 8426713440.
- Pallás Areny, Ramón; Casas, Òscar; Bragós Bardia, Ramon. Sensores y acondicionadores de señal : problemas resueltos. Barcelona: Marcombo, cop. 2008. ISBN 9788426714947.

Complementaria:

- Pérez García, Miguel Ángel. Instrumentación electrónica. Madrid: Paraninfo, 2014. ISBN 9788428337021.
- Webster, John G. Medical instrumentation: application and design. 4th ed. Hoboken: Wiley, 2009. ISBN 9780471676003.

Fecha: 09/07/2025 **Página:** 6 / 6