

Guía docente 820461 - SMPM - Simulación de Máquinas y Procesos

Última modificación: 15/06/2018

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 712 - EM - Departamento de Ingeniería Mecánica.

Titulación: Curso: 2018 Créditos ECTS: 6.0

Idiomas: Catalán, Inglés

PROFESORADO

Profesorado responsable: Gil Serrancolí

Otros: Alex Guerrero, Gil Serrancolí

CAPACIDADES PREVIAS

Mecánica vectorial, cinemática y dinámica del sólido rígido, equaciones diferenciales.

REQUISITOS

Dinámica, Cinemática y dinámica de máquinas, Álgebra y cálculo multivariable

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Transversales:

04 COE N3. COMUNICACIÓN EFICAZ ORAL Y ESCRITA - Nivel 3: Comunicarse de manera clara y eficiente en presentaciones orales y escritas adaptadas al tipo de público y a los objetivos de la comunicación utilizando las estrategias y los medios adecuados.

METODOLOGÍAS DOCENTES

La asignatura combina la metodología expositiva (aproximadamente un 40%) con el trabajo individual (aproximadamente un 20%) y el trabajo en pequeños grupos (trabajo cooperativo en un 40%). El proceso de aprendizaje autónomo se desarrolla utilizando el Campus Digital Atenea, donde se incluyen diferentes materiales docentes como pueden ser cuestionarios de autoevaluación, pautas para realizar el trabajo en grupo, debates y ejercicios propuestos.

La competencia "Comunicación eficaz oral y escrita" se desarrolla durante la presentación del trabajo que los alumnos tendrán que hacer en grupos. Se hará un seguimiento durante el curso de este trabajo, y a la última semana de curso se hará una presentación oral donde los estudiantes tendrán que exponer lo que han trabajado, los resultados y conclusiones.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- 1. Saber calcular velocidades y aceleraciones, y fuerzas y momentos, en un software de programación numérica.
- 2. Comprender qué son las ecuaciones del movimiento y como se utilizan.
- 3. Comprender los métodos de optimización de trayectorias básicas.
- ${\bf 4.\ Desarrollar\ un\ modelo\ de\ un\ mecanismo\ y\ simular\ su\ movimiento.}$

Fecha: 23/05/2020 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	75.00
Horas grupo grande	15,0	12.50
Horas grupo pequeño	15,0	12.50

Dedicación total: 120 h

CONTENIDOS

Nota: Esta asignatura se titula "Simulación del Movimento"

Descripción:

_

Tema 1: Análisis cinemático

Descripción:

- Coordenadas generalizadas (absolutas y relativas) ? (1h)
- Sistemas de cadena cinemática abierta (3h)
- o Cálculo de velocidades en 2D (recordatorio)
- o Cálculo de velocidades en 3D
- o Cálculo de aceleraciones (por derivación)
- Sistemas de cadena cinemática cerrada (2h)
- o Cuadrilátero articulado (restricciones cinemáticas y cálculo de velocidades)
- L1: Càlcul de velocitats d?un sistema en 2D de cadena oberta i visualització, en Matlab. (2h)
- L2: Càlcul de velocitats d?un sistema en 3D de cadena oberta i visualització, recordatori gràfics, en Matlab. (2h)

Dedicación: 10 h Grupo grande/Teoría: 6h Actividades dirigidas: 4h

Tema 2: Análisis dinámico

Descripción:

- Teoremas vectoriales en 2D (recordatorio) (1h)
- Tensor de inercia, recordatorio (1h)
- Teoremas vectoriales en 3D (3h)
- Ecuaciones del movimiento por teoremas vectoriales (3h)

L3: Cálculo de las ecuaciones del movimiento mediante el análisis dinámico de un péndulo doble (2h)

Dedicación: 10 h Grupo grande/Teoría: 8h Actividades dirigidas: 2h

Fecha: 23/05/2020 **Página:** 2 / 4

Tema 3: Ecuaciones de Lagrange

Descripción:

- Cálculo de la energía cinética (recordatorio) (1h)
- Cálculo de la energía potencial (1h)
- Ecuaciones de Lagrange (sin multiplicadores ni fuerzas generalizadas) (3h)
- Potencias virtuales (3h)
- Ecuaciones de Lagrange (sin multiplicadores), con fuerzas generalizadas (4h)
- Ecuaciones de Lagrange con multiplicadores (4h)

L4: Cálculo de las ecuaciones del movimiento mediante las ecuaciones de Lagrange de un péndulo doble. Visualización de las relaciones entre momentos y fuerzas vs. posiciones, velocidades y acceleraciones. (4h)

Dedicación: 20 h Grupo grande/Teoría:

Grupo grande/Teoría: 16h Actividades dirigidas: 4h

Tema 4: Optimitzación

Descripción:

- Optimización estática (2h)
- Ejemplos analíticos y cálculo numérico de optimización estática (2h)
- Optimización dinámica mediante colocación directa (3h)
- Ejemplo de simulación del movimiento de un péndulo doble mediante optimización dinámica basada en colocación directa. (5h)

L5: Ejemplo de simulación del movimiento de un péndulo doble mediante optimización dinámica basada en colocación directa. (6h)

Presentación de trabajos (2h)

Dedicación: 20 h

Grupo grande/Teoría: 14h Actividades dirigidas: 6h

SISTEMA DE CALIFICACIÓN

La asignatura tiene un alto componente práctico, trata que el estudiante se familiarice con los métodos numéricos utilizados habitualmente en simulación del movimiento. El trabajo práctico que el alumno tendrá que realizar y defensar, vale un 50%. Se hará un seguimiento durante el curso de este trabajo. El alumno tendrá que proponer un mecanismo (sencillo, de entre 2 y 4 grados de libertad) y hacer un análisis cinemático y dinámico, y optimizar la trayectoria de una o más coordenadas.

Test de medio cuadrimestre: 10%

Informes de las sesiones en las aulas informáticas: 20%

Examen final: 20%

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Para la realización de las pruebas, los profesores darán las indicaciones en cada caso de cual es el material que se puede llevar a las pruebas de evaluación y cual será la normativa para su realización. De manera general, las pruebas se realizarán sin utilizar libros ni apuntes.

Fecha: 23/05/2020 Página: 3 / 4

BIBLIOGRAFÍA

Básica:

- Agulló Batlle, Joaquim. Mecànica de la partícula i del sòlid rígid. 3a ed. cor. i ampl. Barcelona: OK Punt, 2002. ISBN 8492085061.
- Agulló Batlle, Joaquim. Introducció a la mecánica analítica, percussiva i vibratòria : amb 198 figures, 80 qüestions amb solucions, 47 problemes amb resultats i 48 exemples d'aplicació. Barcelona: OK Punt, DL 1998. ISBN 8492085037.

Complementaria:

- Betts, John T. Practical methods for optimal control using nonlinear programming. Philadelphia: Society for Industrial and Applied Mathematics, cop. 2010. ISBN 9780898716887.

Fecha: 23/05/2020 Página: 4 / 4