

# Course guide 240625 - 240625 - Linear Control Systems: Internal Description

| Unit in charge:               | Barcelona School of Industrial Engineering |                   |  |
|-------------------------------|--------------------------------------------|-------------------|--|
| Teaching unit:                | 749 - MAT - Department of Mathematics.     |                   |  |
| Degree:<br>Languages: English | Academic year: 2023                        | ECTS Credits: 4.5 |  |

| LECTURER               |            |
|------------------------|------------|
| Coordinating lecturer: | Marta Peña |

Others: Ferrer Llop, Jose

# **DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES**

#### **Specific:**

2. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

3. Capacity to design control systems and industrial automation.

## Transversal:

1. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

## **TEACHING METHODOLOGY**

There will be theoretical and practical classes

# LEARNING OBJECTIVES OF THE SUBJECT

The subject provides an overview of the theory of linear systems as a qualitative study of mathematical models of physical systems. In particular the properties of stability, controllability and observability, and the ability to change some of these properties through appropriate feedback.

## **STUDY LOAD**

| Туре               | Hours | Percentage |
|--------------------|-------|------------|
| Self study         | 67,5  | 60.00      |
| Hours medium group | 45,0  | 40.00      |

Total learning time: 112.5 h

Last modified: 16/05/2023



# CONTENTS

## (ENG) 1: Characterization of systems

#### **Description:**

Dynamical systems. Equilibrium and linearization. Continuous linear systems. Composition of systems.

#### **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

## Full-or-part-time: 35h

Theory classes: 5h Practical classes: 5h Theory classes: 5h Practical classes: 5h Self study : 15h

## (ENG) 2: Controlabillity and observability

#### **Description:**

Controllable systems. Observable systems: uncontrollable systems: controllable subsystem. Unobservable systems: observable subsystem. Kalman decomposition.

## **Related activities:**

Continued mark 1

## **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

CETI11B. Capacity to design control systems and industrial automation.

03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Full-or-part-time: 52h 30m

Theory classes: 7h 30m Practical classes: 7h 30m Theory classes: 7h 30m Practical classes: 7h 30m Self study : 22h 30m



## (ENG) 3: Design

## **Description:**

Pole assignment by state feedback. Observers.

#### **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

CETI11B. Capacity to design control systems and industrial automation.

03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

#### Full-or-part-time: 35h

Theory classes: 5h Practical classes: 5h Theory classes: 5h Practical classes: 5h Self study : 15h

#### (ENG) 4: Realization

### **Description:**

Canonical controllable realization. Canonical observable realization. MacMillan degree. Minimal realization.

#### **Related activities:**

Continued mark 2

## **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

CETI11B. Capacity to design control systems and industrial automation.

03 TLG. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

#### Full-or-part-time: 35h

Theory classes: 5h Practical classes: 5h Theory classes: 5h Practical classes: 5h Self study : 15h

# ACTIVITIES

### (ENG) AVALUACIO CONTINUADA 1

#### **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

**Full-or-part-time:** 2h Self study: 2h



## (ENG) AVALUACIO CONTINUADA 2

## **Related competencies :**

CE1. Capacity to solve mathematical problems that can appear in engineering . Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 2h

Self study: 2h

# **GRADING SYSTEM**

Final Mark=0.6\*FinalExam+0.2\*ContinuedMark1+0.2\*ContinuedMark2

## **BIBLIOGRAPHY**

**Basic:** 

- Wonham, W. M. Linear Multivariable Control [on line]. 3rd ed. New York: Springer Verlag, 1985 [Consultation: 24/04/2023]. Available on:

https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=6568 808. ISBN 9781461270058.

- Kongoli, Florian. Automation [on line]. 2012. Rijeka, Croatia: In Tech, 2012 [Consultation: 18/04/2023]. Available on: <a href="http://www.intechopen.com/books/automation">http://www.intechopen.com/books/automation</a>. ISBN 9789535106852.

- Chen, Chi-Tsong. Introduction to linear system theory. New York: Holt, Rinehart and Winston, cop. 1970. ISBN 030771552.