

Guía docente 480071 - BISS - Biodiversidad y Sistemas Socioecológicos

Última modificación: 22/05/2024

Unidad responsable: Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Barcelona

Unidad que imparte: 731 - 00 - Departamento de Óptica y Optometría.

Titulación: MÁSTER UNIVERSITARIO EN CIENCIA Y TECNOLOGÍA DE LA SOSTENIBILIDAD (Plan 2013). (Asignatura

optativa).

Curso: 2024 Créditos ECTS: 5.0 Idiomas: Castellano, Inglés

PROFESORADO

Profesorado responsable: JORDI MORATO FARRERAS

Otros:

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

- 3. Aplicar los métodos y herramientas utilizados en la identificación, gestión de la información, planificación, gestión, ejecución y evaluación de programas y proyectos en el ámbito de la sostenibilidad y la gestión ambiental y saber aplicarlos en forma colaborativa a problemas concretos.
- 4. Diseñar, desarrollar, y aplicar de forma integrada y coordinada conceptos, teorías y técnicas de análisis de las ciencias sociales, económicas, de la tierra, y de técnicas de gestión y de investigación-acción y de enfoques basados en la ciencia y las tecnologías de la sostenibilidad en los ámbitos de Biodiversidad y los Recursos Naturales, el Ambiente Construido y los Servicios, y el Sistema Productivo y la Información.
- 2. Analizar de forma crítica y evaluar las teorías y enfoques sobre las características y propiedades de la geoesfera y la bioesfera que facilitan y enmarcan el desarrollo de los sistemas socioecológicos, así como los principales retos del cambio climático.
- 5. Integrar los conocimientos sobre gestión integrada del medio natural y los recursos naturales, en especial los recursos hídricos y energéticos, en el desarrollo y propuesta de soluciones científico tecnológicas a retos de la sostenibilidad.
- 6. Aplicar los métodos y herramientas utilizados en la gestión integrada del medio natural y los recursos naturales, en la identificación, gestión de la información, planificación, gestión, ejecución y evaluación de programas y proyectos en los ámbitos de la alimentación y el desarrollo rural.
- 7. Aplicar los métodos y herramientas utilizados en la gestión integrada del medio natural y los recursos naturales, en la identificación, gestión de la información, planificación, gestión, ejecución y evaluación de programas y proyectos en los ámbitos de la ingeniería y tecnologías del agua.

Genéricas:

9. Desarrollar y/o aplicar ideas con originalidad en un contexto de investigación, identificando y formulando hipótesis o ideas innovadoras y sometiéndolas a prueba de objetividad, coherencia y viabilidad.

Transversales:

1. TERCERA LENGUA: Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

METODOLOGÍAS DOCENTES

Durante el desarrollo de la asignatura se utilizarán las siguientes metodologías docentes:

Clase magistral o conferencia (EXP): exposición de conocimientos por parte del profesorado mediante clases magistrales o bien por personas externas mediante conferencias invitadas.

Trabajo teórico-práctico dirigido (TD): realización en el aula una actividad o ejercicio de carácter teórico o práctico, individualmente o en grupos reducidos, con el asesoramiento del profesor o profesora.

Proyecto, actividad o trabajo de alcance reducido (PR): aprendizaje basado en la realización, individual o en grupo, de un trabajo de reducida complejidad o extensión, aplicando conocimientos y presentando resultados.

Actividades de Evaluación (EV).

Actividades formativas:

Durante el desarrollo de la asignatura se utilizarán las siguientes actividades formativas:

Presenciales

Clases teóricas y conferencias (CTC): conocer, comprender y sintetizar los conocimientos expuestos por el profesorado mediante clases magistrales o bien por conferenciantes.

Clases prácticas (CP): participar en la resolución colectiva de ejercicios, así como en debates y dinámicas de grupo, con el profesor o profesora y otros estudiantes en el aula.

Tutorías de trabajos teórico prácticos (TD): realizar en el aula una actividad o ejercicio de carácter teórico o práctico, individualmente o en grupos reducidos, con el asesoramiento del profesor o profesora.

No presenciales

Realización de un proyecto, actividad o trabajo de alcance reducido (PR): llevar a cabo, individualmente o en grupo, un trabajo de reducida complejidad o extensión, aplicando conocimientos y presentando resultados.

Estudio autónomo (EA): estudiar o ampliar los contenidos de la materia de forma individual o en grupo, comprendiendo, asimilando, analizando y sintetizando conocimientos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Al finalizar la asignatura, el/la estudiante:

Conoce los principios e instrumentos propios de la ecología y comprende y es capaz de analizar las relaciones de los organismos vivos con el medio, la estructura y dinámica de las poblaciones y los ecosistemas, el metabolismo de los sistemas socioecológicos y los instrumentos disponibles para su medida, gestión y valorización a través de servicios ambientales.

Conoce y comprende las interrelaciones de los ciclos del agua, los principios de la hidrología, las características de los distintos recursos hídricos, los problemas cuantitativos y cualitativos de las aguas superficiales y subterráneas, así como las tecnologías de tratamiento principales y mecanismos de gestión integrada más extendidos.

Comprende la necesidad de los recursos hídricos y energéticos para el desarrollo humano y sostenible y conoce las transformaciones a lo largo del proceso desde la fuente del recurso hasta los servicios y suministros así como las restricciones de seguridad y calidad de dichos suministros.

Fecha: 31/10/2024 Página: 2 / 8

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo mediano	12,0	9.60
Horas grupo pequeño	9,0	7.20
Horas grupo grande	24,0	19.20
Horas aprendizaje autónomo	80,0	64.00

Dedicación total: 125 h

CONTENIDOS

1. Marco de análisis y niveles de organización.

Descripción:

- 1. Ecología. Marco de estudio de la ecología. Divisiones y especializaciones de la ecología.
- 2. Escalas de trabajo. De la ecología global a la escala micro.
- 3. Niveles de organización.
- 4. Origen de la vida.
- 5. Composición de la materia viva.
- 6. Ciclos biogeoquímicos. Ciclo del Carbono. Ciclo del nitrógeno.

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 1a: Niveles de organización. Actividad 1b: Ciclo del carbono y combustibles fósiles.

Dedicación: 12h 25m Actividades dirigidas: 2h

Aprendizaje autónomo: 10h 25m

2. Biodiversidad. Conceptos, medición. Políticas internacionales.

Descripción:

- 1. Concepto y elementos de la biodiversidad.
- 2. Medida de la biodiversidad
- 3. Crisis de biodiversidad
- 4. Políticas internacionales

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 1: Artículos sobre biodiversidad. Trabajo de grupo.

Dedicación: 11h 45m Grupo grande/Teoría: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 8h 45m

Fecha: 31/10/2024 **Página:** 3 / 8

3. Servicios ecosistémicos.

Descripción:

- 1. Servicios ambientales y servicios ecosistémicos.
- 2. Valoración económica de bienes y servicios ambientales. Métodos y herramientas.
- 3. Biodiversidad y los negocios.
- 4. Casos de estudio.

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula.

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 10h 25m

4. Ecología de poblaciones. Funcionamiento, variabilidad y dinámica de ecosistemas

Descripción:

- 1. Distribución y abundancia de las poblaciones.
- 2. Factores ambientales que afectan el crecimiento. Nicho ecológico.
- 3. Dinámica de los ecosistemas. Cambios en las comunidades.
- 4. Estrategias evolutivas e interacción entre especies.
- 5. Diversidad metabólica. Funcionamiento de los ecosistemas.
- 6. Cadenas alimentarias y flujos de energía.
- 7. Ecología de las comunidades.

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 2: Factores ambientales que condicionan los seres vivos.

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h Aprendizaje autónomo: 10h 25m

5. Biofilms. Tecnologias Naturales basadas en la Naturaleza.

Descripción:

- 1. Biofilms
- 2. Tecnologias Naturales Basadas en la Naturaleza

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 4: ciclo del nitrógeno

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h

Aprendizaje autónomo: 10h 25m

Fecha: 31/10/2024 **Página:** 4 / 8

6. Mitigación, adaptación y resiliencia de los ecosistemas.

Descripción:

- 1. Limites biofísicos del planeta
- 2. Resiliencia. Concepto y aplicaciones.
- 3. Los biofilms como comunidades complejas.
- 4. Resiliencia y adaptación. Estrategias adaptativas a diferentes escalas.
- 5. Vulnerabilidad y resiliencia.
- 6. Mitigación.

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 5: B. Holling, resiliencia y límites biofísicos del planeta.

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h

Aprendizaje autónomo: 10h 25m

7. Recursos naturales, Conocimiento Ecológico Tradicional y Patrimonio Cultural Inmaterial

Descripción:

- 1. Historia e impacto ambiental del uso de los recursos
- 2. Desarrollo sostenible.
- 3. Crecimiento económico y uso de los recursos. Desacoplamiento.
- 4. Agricultura y medio ambiente.
- 5. Conocimiento Ecológico Tradicional y Patrimonio Cultural Inmaterial

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 7: Impacto de la agricultura en el cambio climático.

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h

Aprendizaje autónomo: 10h 25m

8. Gestión integrada y sostenible de los recursos naturales.

Descripción:

- 1. Herramientas para la evaluación de los impactos ambientales: Huella ecológica, EIA, ACV, Indicadores y otros.
- 2. Estudios de evaluación de riesgo. Estudios de impacto ambientales. Monitoreo y evaluación de impactos ambientales. Utilización de los EIA en planificación.
- 3. Evaluación del Ciclo de Vida (ACV).
- 4. Criterios de sostenibilidad en planificación territorial.
- 5. Marcos Conceptuales. Modelos DPSIR. Gestión de poblaciones
- 6. Sistemas naturales de tratamiento.
- 7. Buenas prácticas para la adaptación a cambio climático.

Actividades vinculadas:

Sesiones presenciales. Trabajo en el aula. Actividad 8: Análisis de EIA realizados en infraestructuras de movilidad.

Dedicación: 13h 25m Grupo grande/Teoría: 2h Actividades dirigidas: 1h

Aprendizaje autónomo: 10h 25m

Fecha: 31/10/2024 **Página:** 5 / 8

9. SETS y Tecnologias Apropiadas. Principios Operativos de Resiliencia

Descripción:

1. SETS

2. Tecnologias Apropiadas

3. Principios operativos de resiliencia

Dedicación: 14h 20m Grupo grande/Teoría: 2h Actividades dirigidas: 1h 05m Aprendizaje autónomo: 11h 15m

10. Visita al Parque Natural de Sant Llorenç i Serra de l'Obac

Descripción:

Visita de Mañana al Parque Natural (6 h)

Dedicación: 6h

Actividades dirigidas: 6h

ACTIVIDADES

A1. NIVELES DE ORGANIZACIÓN

Descripción:

Sesiones presenciales. Trabajo en el aula. Actividad 8: Análisis de EIA realizados en infraestructuras de movilidad.

Dedicación: 0,25 h

Material:

Presentación en pdf.

Entregable:

No.

Dedicación: 0h 25m

Grupo grande/Teoría: 0h 25m

A2. CICLO DEL CARBONO Y COMBUSTIBLES FÓSILES

Descripción:

Video del impacto de los combustibles fósiles sobre el ciclo del carbono.

Material:

Video.

Entregable:

Trabajo de síntesis y análisis de la problemática.

Dedicación: 0h 30m

Grupo grande/Teoría: 0h 30m

Fecha: 31/10/2024 **Página:** 6 / 8

A3. FACTORES AMBIENTALES QUE CONDICIONAN LOS SERES VIVOS

Descripción:

Trabajo en grupo de identificación de factores ambientales condicionantes del crecimiento de los seres vivos.

Entregable:

Hoja con listado ordenado de los factores.

Dedicación: 0h 30m

Grupo grande/Teoría: 0h 30m

A4. ARTÍCULOS SOBRE BIODIVERSIDAD. TRABAJO EN GRUPO

Descripción:

Revisión en grupos de artículos sobre biodiversidad.

Material:

Artículos científicos.

Entregable:

Hoja de control con resumen, palabras clave y problemática.

Dedicación: 1h

Grupo grande/Teoría: 1h

A5. B.HOLLING, RESILIENCIA Y LÍMITES BIOFÍSICOS DEL PLANETA

Descripción:

Video.

Material:

Video (inglés).

Entregable:

No.

Dedicación: 0h 25m

Grupo grande/Teoría: 0h 25m

A7. IMPACTO DE LA AGRICULTURA EN EL CAMBIO CLIMÁTICO

Descripción:

Video.

Material:

Video (inglés).

Entregable:

No.

Dedicación: 0h 15m

Grupo grande/Teoría: 0h 15m

Fecha: 31/10/2024 **Página:** 7 / 8

A8. ANÁLISIS DE EIA REALIZADOS EN INFRAESTRUCTURAS DE MOVILIDAD

Descripción:

Revisión y análisis de diferentes EIA. Trabajo en grupo.

Material:

EIA.

Entregable:

Análisis crítico de los EIA.

Dedicación: 1h

Grupo grande/Teoría: 1h

SISTEMA DE CALIFICACIÓN

Se mantiene el sistema de evaluación.

AV1 Presentación Individual (PI). 10%

AV2 Actividades realizadas a lo largo del curso (TR). 30%

AV3 Calidad y rendimiento del trabajo en grupo (TG). 40%

AV4 Anexos Trabajo en Grupo (TG) 20%

BIBLIOGRAFÍA

Básica:

- Beeby, A.; Brennan, A.M. First ecology: ecological principles and environmental issues. 3rd ed. New York: Oxford University Press, 2008. ISBN 9780199298082.
- Burel, F.; Baudry, J. Ecología del paisaje : conceptos, métodos y aplicaciones. Madrid: Mundi Prensa, 2002. ISBN 8484760146.
- Conesa, V. Guía metodológica para la evaluación del impacto ambiental. 4a ed. rev. y ampliada. Madrid: Mundi-Prensa, 2010. ISBN 9788484763840.
- Dajoz, R. Tratado de ecología. 2a ed rev. i ampl. Madrid: Mundi-Prensa, 2002. ISBN 84-7114-828-5.
- Dobson, A.P. Conservation and biodiversity. New York: Scientific American Library; Basingstoke: W.H. Freeman [distributor], 1996. ISBN 0716750570.
- Folch i Guillèn, R (ed). Natura, ús o abús?: llibre blanc de la gestió de la natura als països catalans. 2a ed. Barcelona: Barcino, 1988. ISBN 84-7226-053-4.
- Krebs, C.J. Ecología : estudio de la distribución y la abundancia. 2a. ed. México: Oxford University Press, 2000. ISBN 9686034536.
- Margalef, R. Ecología. 4a ed. Barcelona: Planeta, 1986. ISBN 8432064440.
- Molles, M.C. Ecología : conceptos y aplicaciones [en línea]. 3a ed. Madrid: McGraw-Hill, 2006 [Consulta: 08/02/2021]. Disponible a: http://www.ingebook.com/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=4145. ISBN 844814595X.
- Piñol, J.; Martínez-Vilalta, J. Ecología con números : una introducción a la ecología con problemas y ejercicios de simulación. Barcelona: Lynx, 2006. ISBN 8496553019.
- Rodríguez, J. Ecología. Madrid: Pirámide, 1999. ISBN 8436813022.
- Smith, T.M.; Smith, R.L. Ecología [en línea]. 6a ed. Madrid: Addison Wesley, 2007 [Consulta: 08/02/2021]. Disponible a: http://www.ingebook.com/ib/NPcd/IB BooksVis?cod primaria=1000187&codigo libro=1293. ISBN 9788478290840.
- Sutherland, W.J.; Hill, D.A. (eds). Managing habitats for conservation. Cambridge: Cambridge University Press, 1995. ISBN 0521447763.