

Guía docente 270226 - PIVA - Procesado de Imagen y Visión Artificial

Última modificación: 30/01/2024

Unidad responsable: Facultad de Informática de Barcelona

Unidad que imparte: 739 - TSC - Departamento de Teoría de la Señal y Comunicaciones.

Titulación: GRADO EN CIENCIA E INGENIERÍA DE DATOS (Plan 2017). (Asignatura obligatoria).

Curso: 2023 Créditos ECTS: 6.0 Idiomas: Catalán, Inglés

PROFESORADO

Profesorado responsable: JAVIER RUIZ HIDALGO

Otros: Segon quadrimestre:

JAVIER RUIZ HIDALGO - 11, 12

PHILIPPE SALEMBIER CLAIRON - 11, 12

CAPACIDADES PREVIAS

Los conocimientos adquiridos en las asignaturas del grado en cuatrimestres anteriores.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.

Genéricas:

CG1. Concebir sistemas computacionales que integren datos de procedencias y formas muy diversas, creen con ellos modelos matemáticos, razonen sobre dichos modelos y actúen en consecuencia, aprendiendo de la experiencia.

CG2. Elegir y aplicar los métodos y técnicas más adecuados a un problema definido por datos que representen un reto por su volumen, velocidad, variedad o heterogeneidad, incluidos métodos informáticos, matemáticos, estadísticos y de procesado de la señal.

CG4. Identificar oportunidades para aplicaciones innovadoras orientadas a datos en entornos tecnológicos en continua evolución.

CG5. Poder recurrir a conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.

Transversales:

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

Básicas:

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

METODOLOGÍAS DOCENTES

La asignatura se basa en clases presenciales de teoría y laboratorio. Las clases de teoría siguen el programa definido en esta guía docente. Dentro de las clases de teoría se promociona el diálogo entre los profesores y los estudiantes proponiendo ejercicios y actividades a realizar conjuntamente basados en aspectos particulares del tema que se está tratando. Las clases de laboratorio ejemplifican los contenidos desarrollados en las clases de teoría.

Fecha: 21/02/2024 **Página:** 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- 1.Adquirir los conocimientos básicos de representación frecuencial y filtros avanzados de imágenes.
- 2.Comprender y saber utilizar las herramientas de procesado geométrico.
- 3. Comprender y saber utilizar las técnicas de segmentación y detección de objetos.
- 4. Adquirir los conocimientos básicos de estimación de movimiento i seguimiento.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	45,0	30.00
Horas grupo pequeño	15,0	10.00

Dedicación total: 150 h

CONTENIDOS

Filtrado y Análisis frecuencial

Descripción:

Representación frecuencial: FT, DFT Filtrado avanzado: lineal, no local, bilateral

Análisis multi-escala

Procesado geométrico

Descripción:

Morfología matemática Filtros por reconstrucción

Modelos variacionales i conjuntos de nivel

Modelo basado en regiones

Descripción:

Segmentación basada en transiciones: Detección de contornos, contornos activos

Segmentación basada en homogeneidad: Classificación, crecimiento de regiones, watershed.

Modelo basado en objetos

Descripción:

Detección de objetos: descriptores locales, bag of words, propuestas de regiones, regresión.

Análisis de vídeo

Descripción:

Estimación de movimiento, optical flow

Seguimiento

Fecha: 21/02/2024 **Página:** 2 / 5

ACTIVIDADES

Tema 1

Descripción:

Clases de teoría, problemas y laboratorio correspondientes al Tema 1

Objetivos específicos:

1

Competencias relacionadas:

CG5. Poder recurrir a conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.

CG1. Concebir sistemas computacionales que integren datos de procedencias y formas muy diversas, creen con ellos modelos matemáticos, razonen sobre dichos modelos y actúen en consecuencia, aprendiendo de la experiencia.

CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.

CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Dedicación: 29h 42m Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 17h 42m

Tema 2

Descripción:

Clases de teoría, problemas y laboratorio correspondientes al Tema 2

Objetivos específicos:

2

Competencias relacionadas:

CG2. Elegir y aplicar los métodos y técnicas más adecuados a un problema definido por datos que representen un reto por su volumen, velocidad, variedad o heterogeneidad, incluidos métodos informáticos, matemáticos, estadísticos y de procesado de la señal

CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.

CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Dedicación: 29h 42m Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 17h 42m

Fecha: 21/02/2024 Página: 3 / 5

Tema 3

Descripción:

Clases de teoría, problemas y laboratorio correspondientes al Tema 3

Objetivos específicos:

3

Competencias relacionadas:

- CG1. Concebir sistemas computacionales que integren datos de procedencias y formas muy diversas, creen con ellos modelos matemáticos, razonen sobre dichos modelos y actúen en consecuencia, aprendiendo de la experiencia.
- CG2. Elegir y aplicar los métodos y técnicas más adecuados a un problema definido por datos que representen un reto por su volumen, velocidad, variedad o heterogeneidad, incluidos métodos informáticos, matemáticos, estadísticos y de procesado de la señal
- CG4. Identificar oportunidades para aplicaciones innovadoras orientadas a datos en entornos tecnológicos en continua evolución. CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.
- CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.
- CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.
- CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Dedicación: 29h 42m Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 17h 42m

Tema 4

Descripción:

Clases de teoría, problemas y laboratorio correspondientes al Tema 4

Objetivos específicos:

3

Competencias relacionadas:

- CG1. Concebir sistemas computacionales que integren datos de procedencias y formas muy diversas, creen con ellos modelos matemáticos, razonen sobre dichos modelos y actúen en consecuencia, aprendiendo de la experiencia.
- CG2. Elegir y aplicar los métodos y técnicas más adecuados a un problema definido por datos que representen un reto por su volumen, velocidad, variedad o heterogeneidad, incluidos métodos informáticos, matemáticos, estadísticos y de procesado de la señal.
- CG4. Identificar oportunidades para aplicaciones innovadoras orientadas a datos en entornos tecnológicos en continua evolución.
- CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.
- CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.
- CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.
- CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Dedicación: 29h 42m Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 17h 42m

Fecha: 21/02/2024 Página: 4 / 5

Tema 5

Descripción:

Clases de teoría, problemas y laboratorio correspondientes al Tema 5

Objetivos específicos:

4

Competencias relacionadas:

CG5. Poder recurrir a conocimientos fundamentales y metodologías de trabajo sólidas adquiridos durante los estudios para adaptarse a los nuevos escenarios tecnológicos del futuro.

CG2. Elegir y aplicar los métodos y técnicas más adecuados a un problema definido por datos que representen un reto por su volumen, velocidad, variedad o heterogeneidad, incluidos métodos informáticos, matemáticos, estadísticos y de procesado de la señal

CE5. Diseñar y aplicar técnicas de procesado de señal, eligiendo entre distintas herramientas tecnológicas, incluidas las de visión Artificial, de reconocimiento del lenguaje hablado y las de tratamiento de datos multimedia.

CT6. Aprendizaje autónomo. Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar dicho conocimiento.

CT7. Tercera lengua. Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Dedicación: 29h 42m Grupo grande/Teoría: 9h Grupo pequeño/Laboratorio: 3h Aprendizaje autónomo: 17h 42m

SISTEMA DE CALIFICACIÓN

La nota final de la asignatura se obtiene a partir de les notes de

Examen parcial: P (20%)Examen final: F (50%)Prácticas: L (30%)

Nota = max (0.5F+0.2P+0.3L ; 0.7F+0.3L)

En caso de hacer examen de re-evaluación (R), la nota final es:

Nota = 0.7R + 0.3L

BIBLIOGRAFÍA

Básica:

- González, R.C.; Woods, R.E. Digital image processing. 4th ed., global ed. New York, NY: Pearson, 2018. ISBN 1292223049.
- Szeliski, R. Computer vision: algorithms and applications. London: Springer, 2011. ISBN 9781848829350.

Fecha: 21/02/2024 **Página:** 5 / 5